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Introduction

Background

Service level agreement, SLA
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Focused metric: service availability
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Introduction

Background

SLA examples in a cloud computing case:

Monthly Uptime Percentage Service Credit
m Microsoft Azure Percentage
Less than 99.9% but greater than or equal to 99.0% 10%
£ Google Cloud D FE Less than 99.0% but greater than or equal to 95.0% 25%
Less than 95.0% 100%
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Introduction

k-fault tolerance

To overcome servers' failure and provide high-quality service:

¢ fault tolerance system

The minimum server configuration for the service can still be satisfied when k hosting
servers concurrently fail. [Zhou et al., 2017, Yuan et al., 2018, Guo et al., 2019]

Main trade-off:
with more backup server

® the likelihood of SLA violation |

® the cost of servers 1

Runyu Tang Distributionally Robust Dynamic Resource Provisioning under Service Level Agreement



Trade-off

SLA violation cost v.s. cost of back-up servers

min hx + &

X Holding cost  Penalty cost

Estimation of the distribution of servers’ downtime. [Du et al., 2015, Guo et al., 2020]
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Trade-off

SLA violation cost v.s. cost of back-up servers

min hx + &

X Holding cost  Penalty cost

Estimation of the distribution of servers’ downtime. [Du et al., 2015, Guo et al., 2020]

The distributionally robust version:

in h EF
min x+£% [c&]
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Model

Dynamic adjustment

Technology advancement: loT, virtual machines...

As the cumulative system downtime randomly grows with the progression of service
in a contracted period, the service providers can take advantage of the observed
downtime information to make dynamic decisions on backup deployment.

decision (x1) — observation (s;) — decision(xz) — ...

TV TV
stage 1 stage 2

— observation (s;) — decision(x;) — ...

-
stage t

— observation (s7) — decision(x71)

stage T

Robust Dynamic Programming
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Model
Literature

SLA related
¢ inventory SLA [Katok et al., 2008, Liang and Atkins, 2013, Jiang et al., 2019]
® cloud SLA [Passacantando et al., 2016, Guo et al., 2019]
Robust related
® Uncertainty set (rectangularity): [Nilim and Ghaoui, 2005, lyengar, 2005,
Wiesemann et al., 2013, Mannor et al., 2016, Goyal and Grand-Clément, 2021]
® Linear adjusted strategy: [Ben-Tal et al., 2005, Bertsimas et al., 2010,
Bertsimas and Goyal, 2012, Bertsimas et al., 2019]
e Approximate Robust DP: [Petrik, 2012, Petrik and Subramanian, 2014,
Lim and Autef, 2019, Yu and Shen, 2020]

Our problem: finite decision space and a continuous state space.
We develop convexified surrogates with performance guarantees.
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Model
Model

discrete time: T periods

® state: cumulative system downtime s;
® action: backup server number x; € &7
® ambiguity set: .%(x)

The ambiguity set can be constructed using 1-norm Wasserstein distance:

Z(x) = {Q € P(3)WA(Q, Byy) < 6},

where

WA(Q1.Q) = _inf [ 116 - llm(da. o).
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Model
Model

Distributionally Robust Dynamic Programming

(DRDP) Vi(s¢) = rr)1<in Pen;\(x : hx: + EF [0 (s + €(xt) — max{ss, b}) + pViy1(st41)],
St+1 = St + &xrs
VT+1(S) = 07 Vs

where b = (1 — a) T is the acceptable downtime in SLA.
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Solution Approach
Last-period problem

LP reformulation [Kuhn et al., 2019]

NX
. 1

Vr(sr) = min, hxr 4960+ e D %
1=

st. c(st—b) " +cET tun(r—ET)<r, Vi<NF
Cél)-(T + ujp (1 — é\fT) <r, Vi<NF
|u,-1 —C| <7, Vi< Nil(—
|U,‘2| <7, Vi< N)7<—
xteX,veR, i e R ujs,upp >0 Vi< NF.

where é,x is the historical downtime data with x backup servers.
The last period problem is a finite-dimension LP.
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Solution Approach

Properties

m|n hxt + max / 3 (&(xT1)) déxr, if st > b,
VT(ST) =

m|n hxt + max </ 0 (&(xT)+ st —b) d§XT) , otherwise.
PGJXT P

e When st < b, for a given x, V7(s1;x) is piece-wise linear and convex increasing
in ST.
® When st > b, for a given x, V1 (s7;x) is a constant.
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Solution Approach

A Numerical Example
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Solution Approach
Moiving forward

For period t < T, we have

Vi(st) = m|n hx: + Jmax / [0 (&(xt) + st — max{s¢, b}) + Viyi(st + &(xt))] déx,-

PEFy,

Let Le(st,&(xt)) := 0 (&(xt) + st — b) + Viyi1(st + &(xt)) denote the integrand when
St < b.

Then L:(st, &) is generally nonconvex in &, which prevents us from applying the LP
reformulation.
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Solution Approach

Convexified surrogates

Proposition 1.

The linear approximation error is bounded:

18— glloo = man{éf(y) —g(y)} =le/A
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Solution Approach
Moving forward

[t(snft) = (st + & — max{b,s:}) + Vt+1(5t + &)

max {&(s¢ + &) + dn}, if s; + & < b,
— { n€[m]

c&t +c(st — b)” + \7t+1, otherwise.
= max (&8¢ +d,},

After applying the approximation, the problem in each period is always a
finite-dimension (parametric) LP:
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Solution Approach Radius Adjustment Numerical Experiments

Radius Adjustment

Theorems 3.4 and 3.5 of [Mohajerin Esfahani and Kuhn, 2018].

Assume that the true distribution Q is light tailed, then, for any 3 € (0, 1], there exist
constants ¢y, ¢ > 0 such that P { Wl(Q,I@’N) < 77N} > 1— (8 holds as long as

1/2
(Iog(C;V//J’)> ? N> og(a/6),

nn(B) = e 1/a (1)
<log£26;v/6)> N < |0g(;1/5).
Additionally, the finite sample guarantee holds as follows:
P{V2(s::0:) < Vi(s:©0)} > (1—B)T Y, vO<t<T, (2)

where ©; = {nn(8), nn(B), - .., nn(B)}.



Introduction Mode Solution Approach Radius Adjustment Numerical Experiments

State and stage dependent radius adjustment

Proposition 2.

At stage t, if we choose Bt(st) such that D; (3t(st); st) = 0 for any state s; < b, then
the following inequality holds

P{V2(s:;O¢(s:)) < Ve(b;00)} > (1= B)T 1, Vs, €[0,b] and0<t< T, (3)

and the out-of-sample performance under differegt states is upper bounded by
V¢(b; ©;) with a probability no lower than (1 — 3)T—t+1,

Proposition 3.

At the same stage t, the confidence level Bt(st) is nonincreasing in s;. Under the same
cumulative service shortages state s, the confidence level 3;(s) is nondecreasing in t.
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Radius Adjustment

Adaptive radius adjustment

The core idea:

If the realized cumulative costs are lower than the expected costs up to t, then the
supplier could act more adventurously by choosing a smaller radius to construct the
ambiguity set, thereby leading to less-conservative resource provisioning decisions while
maintaining the same confidence regarding the maximum expected total costs across
the entire planning horizon.

We choose an adjusted confidence level 3 that satisfies the following equation:

(1-B)(1-B) T~ Vi(s:: ©¢)+(B-B)(1-B) T~ tVt “H1-3)T t+1( 0(0;©)-U;) = 0.
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Numerical Experiments

A cloud computing example

® n =100 virtual machines (VMs)
T = 30 stages

a = 99% SLA guarantee

h/c = 0.3 holding/penalty cost

m+i)A m+k—i+D2 (m+k—i+1)2

" in (i + Dp

Illustration of servers’ up and down state transitions
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Numerical Experiments

A cloud computing example
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Numerical Experiments

Sensitivity analysis
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Sensitivity analyses for the DRDP policies
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Numerical Experiments
Radius adjustment

Different 0 for ambiguity sets under different x while keeping 5 unchanged
— by Bootstrapping.

Cost performance under different g

Policy AveCost StdCost AveDown StdDown Improvement
best fixed # =2 31796 1.86 226.83 60.98 —

g=1 427.18  450.65 412.29 16.49 -25.57%
8=0.8 31531  3.40 183.75 50.80 0.84%
B8=0.6 327.54  2.83 153.24 44.30 -2.92%
8=0.4 339.14  3.00 126.44 38.56 -6.24%
B8=0.2 360.00 0.00 75.68 28.60 -11.68%
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Numerical Experiments
Radius adjustment

Cost performance with state- and stage-dependent radius adjustments

Policy AveCost StdCost AveDown StdDown Improvement
g =08w/oRA 31531  3.40147 183.75 50.79951 —

g =028 302.30  3.00 216.26 54.25 4.13%

B =0.6 201.70  4.02 239.98 58.93 7.49%
B=04 306.23 3.97 207.34 52.61 2.88%
6=02 324.26 3.81 163.15 44 .37 -2.84%
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Numerical Experiments
Radius adjustment

Cost performance with adaptive radius adjustment

Policy AveCost StdCost AveDown StdDown Improvement
f=0.6 w/o ARA 291.70  4.02 239.98 58.93 —

65=0.8 274 .47 4.73 278.18 72.71 5.91%

B =06 273.33  4.68 305.58 54.45 6.30%
8=0.4 27228 3.84 298.89 58.00 6.45%
8=02 273.42 5.42 306.54 48.54 6.27%
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Conclusion
Insights

» The DRDP framework helps generate cost-efficient dynamic resource
provisioning policies, which outperform the best static policies in both average
and variance of the out-of-sample performance.

» Introducing a small amount of robustness in the DRDP framework can bring
substantial performance improvements.

» In the dynamic setting, applying our radius adjustment approaches, which assign
different Wasserstein radii depending on the states, stages, and cumulative cost
performances, can achieve better out-of-sample performances.

» Adaptive radius adjustment is relatively robust in terms of ensuring less reliance
on the choice of 5. In other words, implementing adaptive radius adjustment
offsets the over-conservativeness brought about by the supplier using an
unnecessarily small confidence level or an excessively large Wasserstein ambiguity
set.
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Conclusion

Main takeaway:
® Wasserstein-based distributionally robust dynamic programming.
® Solution approaches using convexified surrogates.
® Radius adjustments.

Application to cloud computing services.

Thank you!
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