

Distributionally Robust Dynamic Resource Provisioning under Service Level Agreement

Runyu Tang

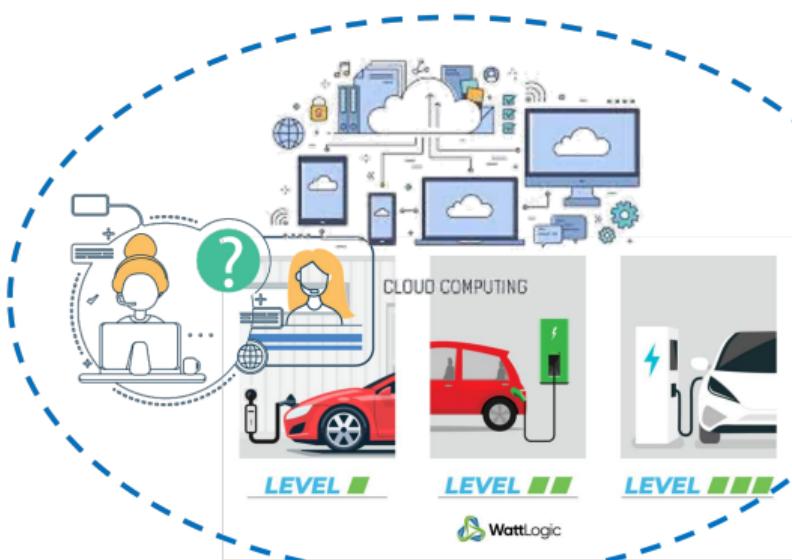
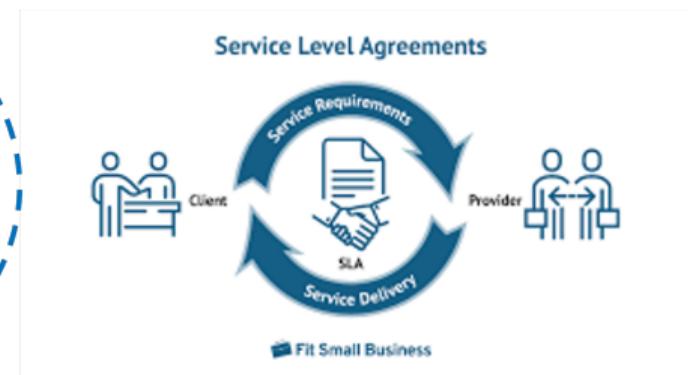
Xi'an Jiaotong University

with Yong Liang

Dec. 10, 2022 ISCOM

Background

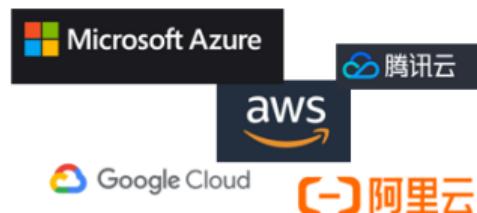
Service level agreement, SLA



Focused metric: **service availability**

Background

SLA examples in a cloud computing case:



Monthly Uptime Percentage	Service Credit Percentage
Less than 99.9% but greater than or equal to 99.0%	10%
Less than 99.0% but greater than or equal to 95.0%	25%
Less than 95.0%	100%

k -fault tolerance

To overcome servers' failure and provide high-quality service:

- **fault tolerance system**

The minimum server configuration for the service can still be satisfied when k hosting servers concurrently fail. [Zhou et al., 2017, Yuan et al., 2018, Guo et al., 2019]

Main trade-off:

with more backup server

- the likelihood of SLA violation \downarrow
- the cost of servers \uparrow

Trade-off

SLA violation cost v.s. cost of back-up servers

$$\min_x \quad \begin{matrix} hx \\ \text{Holding cost} \end{matrix} + \begin{matrix} c\xi_x \\ \text{Penalty cost} \end{matrix}$$

Estimation of the distribution of servers' downtime. [Du et al., 2015, Guo et al., 2020]

Trade-off

SLA violation cost v.s. cost of back-up servers

$$\min_x \quad \begin{matrix} hx \\ \text{Holding cost} \end{matrix} + \begin{matrix} c\xi_x \\ \text{Penalty cost} \end{matrix}$$

Estimation of the distribution of servers' downtime. [Du et al., 2015, Guo et al., 2020]

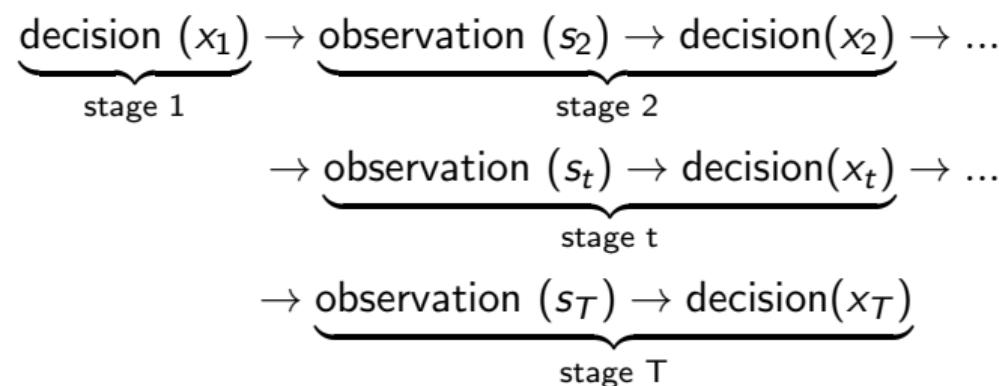
The distributionally robust version:

$$\min_x \quad hx + \max_{\mu \in \mathcal{P}_x} \mathbb{E}^{\mathbb{P}}[c\xi_x]$$

Dynamic adjustment

Technology advancement: IoT, virtual machines...

As the **cumulative system downtime** randomly grows with the progression of service in a contracted period, the service providers can take advantage of the **observed downtime information** to make dynamic decisions on backup deployment.



Robust Dynamic Programming

Literature

SLA related

- inventory SLA [Katok et al., 2008, Liang and Atkins, 2013, Jiang et al., 2019]
- cloud SLA [Passacantando et al., 2016, Guo et al., 2019]

Robust related

- Uncertainty set (rectangularity): [Nilim and Ghaoui, 2005, Iyengar, 2005, Wiesemann et al., 2013, Mannor et al., 2016, Goyal and Grand-Clément, 2021]
- Linear adjusted strategy: [Ben-Tal et al., 2005, Bertsimas et al., 2010, Bertsimas and Goyal, 2012, Bertsimas et al., 2019]
- Approximate Robust DP: [Petrik, 2012, Petrik and Subramanian, 2014, Lim and Autef, 2019, Yu and Shen, 2020]

Our problem: finite decision space and a continuous state space.

We develop convexified surrogates with performance guarantees.

Model

- discrete time: T periods
- state: cumulative system downtime s_t
- action: backup server number $x_t \in \mathcal{A}$
- ambiguity set: $\mathcal{F}(x)$

The ambiguity set can be constructed using 1-norm Wasserstein distance:

$$\mathcal{F}(x) = \{\mathbb{Q} \in \mathcal{P}(\Xi) \mid W_1(\mathbb{Q}, \hat{\mathbb{P}}_{N_t^x}) \leq \theta\},$$

where

$$W_1(\mathbb{Q}_1, \mathbb{Q}_2) := \inf_{\pi \in \Pi(\mathbb{Q}_1, \mathbb{Q}_2)} \int \|\xi_1 - \xi_2\| \pi(d\xi_1, d\xi_2).$$

Model

Distributionally Robust Dynamic Programming

$$\begin{aligned} \text{(DRDP)} \quad V_t(s_t) &= \min_{x_t} \max_{\mathbb{P} \in \mathcal{F}(x_t)} h x_t + \mathbb{E}^{\mathbb{P}} [\delta(s_t + \xi(x_t) - \max\{s_t, b\}) + \rho V_{t+1}(s_{t+1})], \\ s_{t+1} &= s_t + \xi_{x_T}, \\ V_{T+1}(s) &= 0, \quad \forall s \end{aligned}$$

where $b = (1 - \alpha)T$ is the acceptable downtime in SLA.

Last-period problem

LP reformulation [Kuhn et al., 2019]

$$\begin{aligned}
 V_T(s_T) = \min_{x_T, \gamma, \mathbf{r}, \mathbf{u}} \quad & h x_T + \gamma \theta + \frac{1}{N_T^x} \sum_{i=1}^{N_T^x} r_i \\
 \text{s.t.} \quad & c(s_T - b)^- + c \hat{\xi}_i^{x_T} + u_{i1}(\tau - \hat{\xi}_i^{x_T}) \leq r_i, \quad \forall i \leq N_T^x \\
 & c \hat{\xi}_i^{x_T} + u_{i2}(\tau - \hat{\xi}_i^{x_T}) \leq r_i, \quad \forall i \leq N_T^x \\
 & |u_{i1} - c| \leq \gamma, \quad \forall i \leq N_T^x \\
 & |u_{i2}| \leq \gamma, \quad \forall i \leq N_T^x \\
 & x_T \in \mathcal{X}, \gamma \in \mathbb{R}, r_i \in \mathbb{R}, u_{i1}, u_{i2} \geq 0 \quad \forall i \leq N_T^x.
 \end{aligned}$$

where $\hat{\xi}_i^x$ is the historical downtime data with x backup servers.

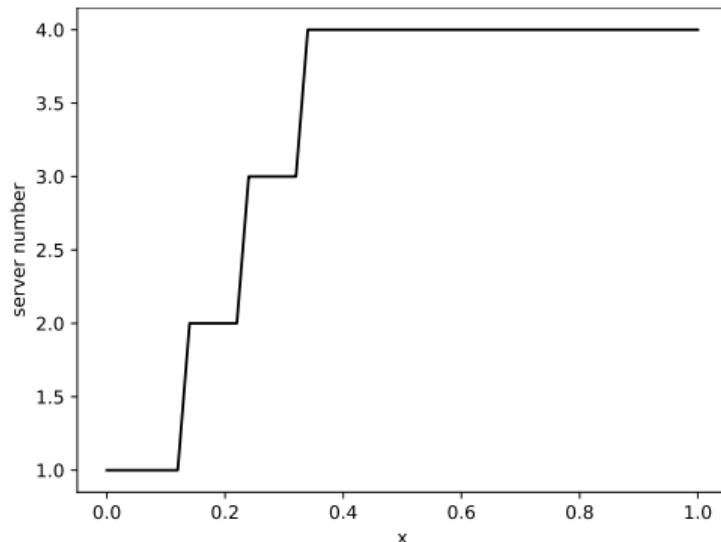
The last period problem is a **finite-dimension LP**.

Properties

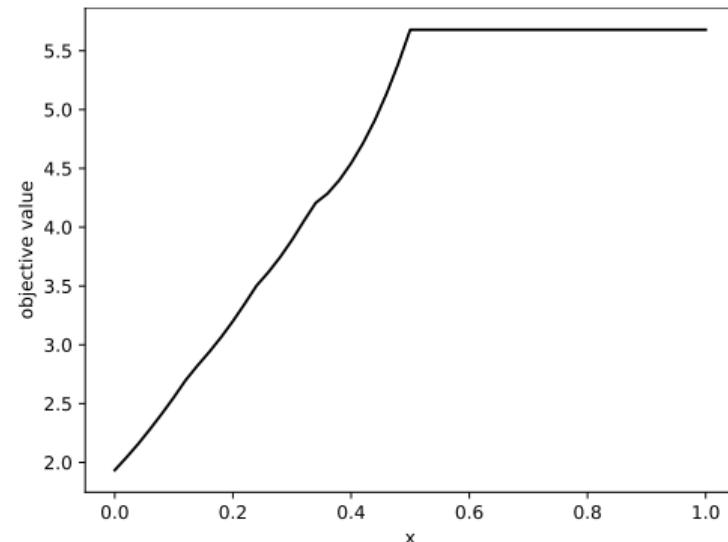
$$V_T(s_T) = \begin{cases} \min_{x_T} h x_T + \max_{\mathcal{P} \in \mathcal{F}_{x_T}} \int_{\mathcal{P}} \delta(\xi(x_T)) d\xi_{x_T}, & \text{if } s_T \geq b, \\ \min_{x_T} h x_T + \max_{\mathcal{P} \in \mathcal{F}_{x_T}} \left(\int_{\mathcal{P}} \delta(\xi(x_T) + s_T - b) d\xi_{x_T} \right), & \text{otherwise.} \end{cases}$$

- When $s_T < b$, for a given x , $V_T(s_T; x)$ is piece-wise linear and convex increasing in s_T .
- When $s_T \geq b$, for a given x , $V_T(s_T; x)$ is a constant.

A Numerical Example



Optimal backup servers number



Optimal objective value

Moving forward

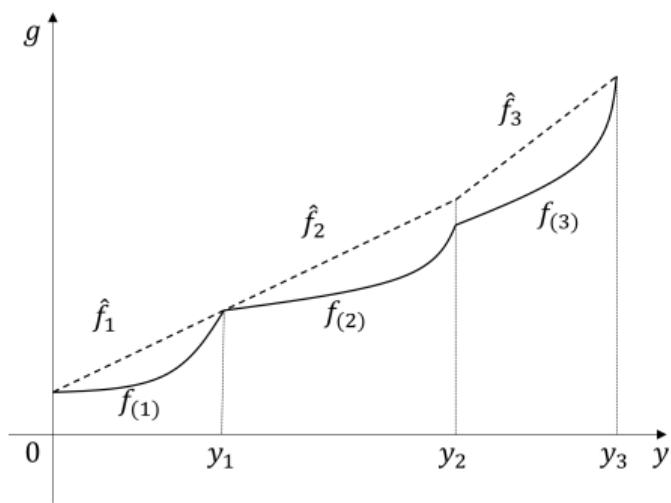
For period $t < T$, we have

$$V_t(s_t) = \min_{x_t} h x_t + \max_{\mathcal{P} \in \mathcal{F}_{x_t}} \int_{\mathcal{P}} [\delta(\xi(x_t) + s_t - \max\{s_t, b\}) + V_{t+1}(s_t + \xi(x_t))] d\xi_{x_t}.$$

Let $L_t(s_t, \xi(x_t)) := \delta(\xi(x_t) + s_t - b) + V_{t+1}(s_t + \xi(x_t))$ denote the integrand when $s_t < b$.

Then $L_t(s_t, \xi)$ is generally nonconvex in ξ , which prevents us from applying the LP reformulation.

Convexified surrogates



Proposition 1.

The linear approximation error is bounded:

$$\|\hat{g} - g\|_{\infty} = \max_y \{\hat{g}(y) - g(y)\} = l\epsilon/4.$$

Moving forward

$$\begin{aligned}
 \hat{L}_t(s_t, \xi_t) &= \delta(s_t + \xi_t - \max\{b, s_t\}) + \hat{V}_{t+1}(s_t + \xi_t) \\
 &= \begin{cases} \max_{n \in [m]} \{\hat{c}_n(s_t + \xi_t) + \hat{d}_n\}, & \text{if } s_t + \xi_t \leq b, \\ c\xi_t + c(s_t - b)^- + \bar{V}_{t+1}, & \text{otherwise.} \end{cases} \\
 &:= \max_{\kappa \leq 1+m} \{\tilde{c}_\kappa \xi_t + \tilde{d}_\kappa\},
 \end{aligned}$$

After applying the approximation, the problem in each period is always a finite-dimension (parametric) LP:

Radius Adjustment

Theorems 3.4 and 3.5 of [Mohajerin Esfahani and Kuhn, 2018].

Lemma 1.

Assume that the true distribution \mathbb{Q} is light tailed, then, for any $\beta \in (0, 1]$, there exist constants $c_1, c_2 > 0$ such that $P\left\{W_1(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \eta_N\right\} \geq 1 - \beta$ holds as long as

$$\eta_N(\beta) = \begin{cases} \left(\frac{\log(c_1/\beta)}{c_2 N}\right)^{1/2}, & \text{if } N \geq \frac{\log(c_1/\beta)}{c_2}, \\ \left(\frac{\log(c_1/\beta)}{c_2 N}\right)^{1/\alpha}, & \text{if } N < \frac{\log(c_1/\beta)}{c_2}. \end{cases} \quad (1)$$

Additionally, the finite sample guarantee holds as follows:

$$P\{V_t^{\mathbb{Q}}(s_t; \Theta_t) \leq \hat{V}_t(s_t; \Theta_t)\} \geq (1 - \beta)^{T-t+1}, \quad \forall 0 \leq t \leq T, \quad (2)$$

where $\Theta_t = \{\eta_N(\beta), \eta_N(\beta), \dots, \eta_N(\beta)\}$.

State and stage dependent radius adjustment

Proposition 2.

At stage t , if we choose $\tilde{\beta}_t(s_t)$ such that $D_t(\tilde{\beta}_t(s_t); s_t) = 0$ for any state $s_t < b$, then the following inequality holds

$$P\{V_t^{\mathbb{Q}}(s_t; \tilde{\Theta}_t(s_t)) \leq \hat{V}_t(b; \bar{\Theta}_t)\} \geq (1 - \bar{\beta})^{T-t+1}, \quad \forall s_t \in [0, b] \text{ and } 0 \leq t \leq T, \quad (3)$$

and the out-of-sample performance under different states is upper bounded by $\hat{V}_t(b; \bar{\Theta}_t)$ with a probability no lower than $(1 - \bar{\beta})^{T-t+1}$.

Proposition 3.

At the same stage t , the confidence level $\tilde{\beta}_t(s_t)$ is nonincreasing in s_t . Under the same cumulative service shortages state s , the confidence level $\tilde{\beta}_t(s)$ is nondecreasing in t .

Adaptive radius adjustment

The core idea:

If the realized cumulative costs are lower than the expected costs up to t , then the supplier could act more adventurously by choosing a smaller radius to construct the ambiguity set, thereby leading to less-conservative resource provisioning decisions while maintaining the same confidence regarding the maximum expected total costs across the entire planning horizon.

We choose an adjusted confidence level $\tilde{\beta}$ that satisfies the following equation:

$$(1-\tilde{\beta})(1-\bar{\beta})^{T-t} \hat{V}_t(s_t; \tilde{\Theta}_t) + (\tilde{\beta}-\bar{\beta})(1-\bar{\beta})^{T-t} \bar{\hat{V}}_t - \rho^{-t} (1-\bar{\beta})^{T-t+1} (\hat{V}_0(0; \bar{\Theta}) - \check{U}_t) = 0.$$

A cloud computing example

- $n = 100$ virtual machines (VMs)
- $T = 30$ stages
- $\alpha = 99\%$ SLA guarantee
- $h/c = 0.3$ holding/penalty cost

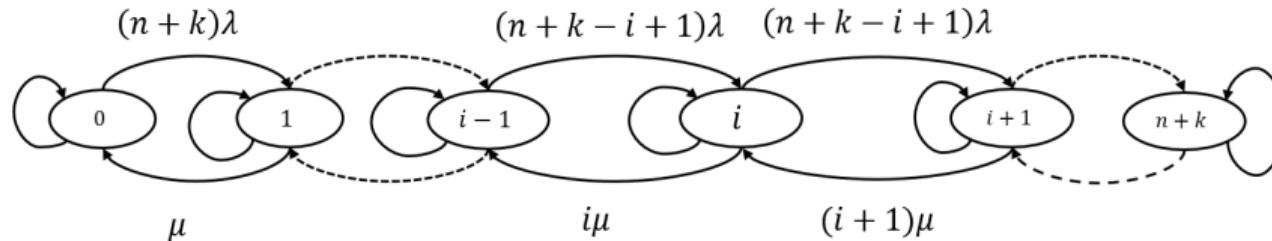
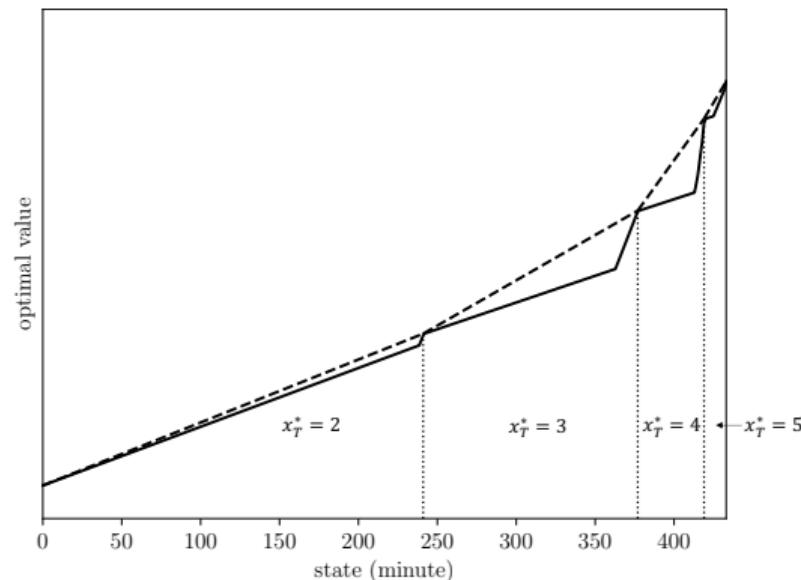
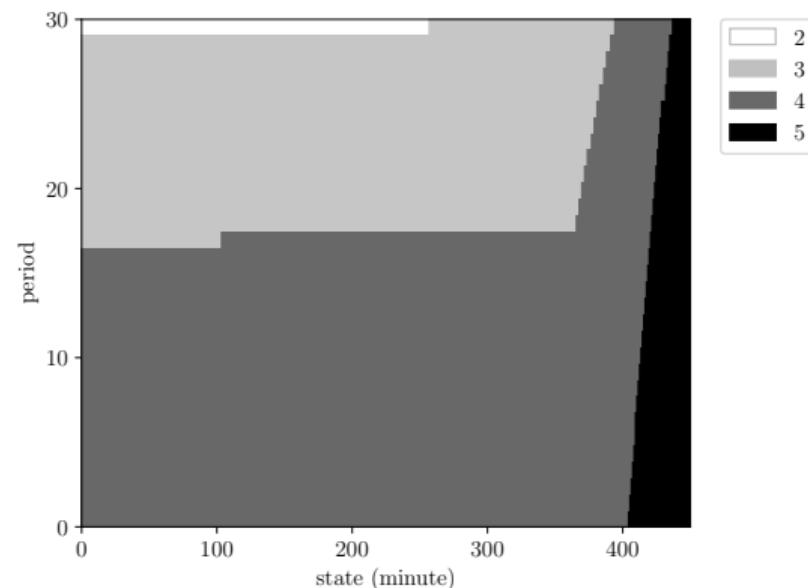


Illustration of servers' up and down state transitions

A cloud computing example

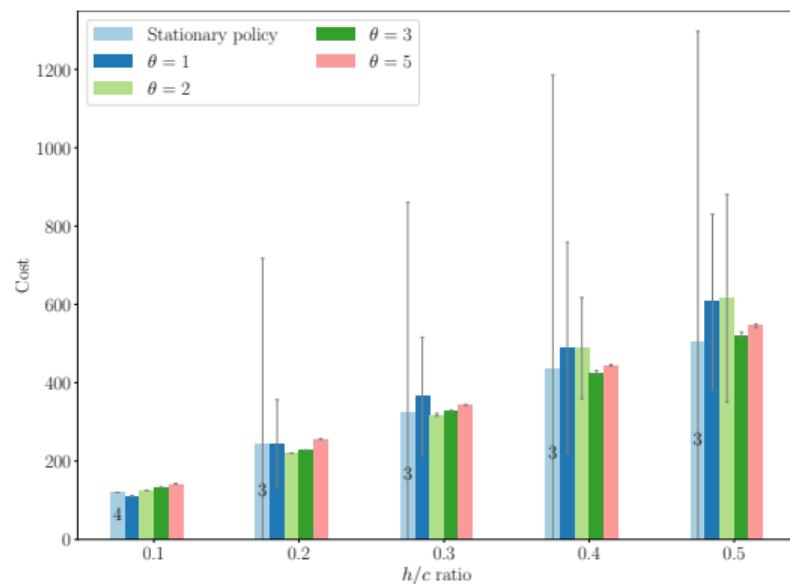
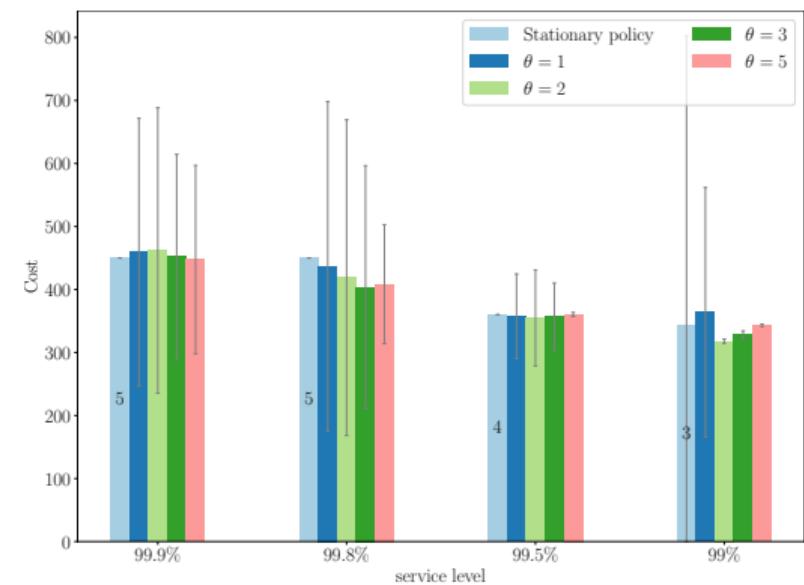


Convexification for the last-stage value function



Service provisioning policy for the whole contract period

Sensitivity analysis



Sensitivity analyses for the DRDP policies

Radius adjustment

Different θ for ambiguity sets under different x while keeping β unchanged
 → by **Bootstrapping**.

Cost performance under different β

Policy	AveCost	StdCost	AveDown	StdDown	Improvement
best fixed $\theta = 2$	317.96	1.86	226.83	60.98	—
$\beta = 1$	427.18	450.65	412.29	16.49	-25.57%
$\beta = 0.8$	315.31	3.40	183.75	50.80	0.84%
$\beta = 0.6$	327.54	2.83	153.24	44.30	-2.92%
$\beta = 0.4$	339.14	3.00	126.44	38.56	-6.24%
$\beta = 0.2$	360.00	0.00	75.68	28.60	-11.68%

Radius adjustment

Cost performance with state- and stage-dependent radius adjustments

Policy	AveCost	StdCost	AveDown	StdDown	Improvement
$\beta = 0.8$ w/o RA	315.31	3.40147	183.75	50.79951	—
$\beta = 0.8$	302.30	3.00	216.26	54.25	4.13%
$\beta = 0.6$	291.70	4.02	239.98	58.93	7.49%
$\beta = 0.4$	306.23	3.97	207.34	52.61	2.88%
$\beta = 0.2$	324.26	3.81	163.15	44.37	-2.84%

Radius adjustment

Cost performance with adaptive radius adjustment

Policy	AveCost	StdCost	AveDown	StdDown	Improvement
$\beta = 0.6$ w/o ARA	291.70	4.02	239.98	58.93	—
$\beta = 0.8$	274.47	4.73	278.18	72.71	5.91%
$\beta = 0.6$	273.33	4.68	305.58	54.45	6.30%
$\beta = 0.4$	272.28	3.84	298.89	58.00	6.45%
$\beta = 0.2$	273.42	5.42	306.54	48.54	6.27%

Insights

- ▶ The DRDP framework helps generate **cost-efficient** dynamic resource provisioning policies, which outperform the best static policies in both average and variance of the out-of-sample performance.
- ▶ Introducing **a small amount of robustness** in the DRDP framework can bring substantial performance improvements.
- ▶ In the dynamic setting, applying our radius adjustment approaches, which assign different Wasserstein radii depending on the states, stages, and cumulative cost performances, can achieve **better out-of-sample performances**.
- ▶ Adaptive radius adjustment is relatively robust in terms of ensuring **less reliance on the choice of β** . In other words, implementing adaptive radius adjustment offsets the over-conservativeness brought about by the supplier using an unnecessarily small confidence level or an excessively large Wasserstein ambiguity set.

Main takeaway:

- Wasserstein-based distributionally robust dynamic programming.
- Solution approaches using convexified surrogates.
- Radius adjustments.
- Application to cloud computing services.

Thank you!