Collaborative Vehicle-to-grid Operations in Frequency Regulation Markets

Runyu Tang @ XJTU with Ho-Yin Mak Jan. 3, 2024 @ THU

Introduction			
Table of Conte	nts		

Introduction

Literature

3 Model

5 Case study

Introduction			
Electric Vehicle	Market		

- Global passenger electric vehicle (EV) sales grew 23% YoY(year over year) in Q3 2023
- China ranked first, with 58% share of total sales, followed by the US and Germany.

Global Passenger Electric Vehicle Market Share, Q4 2021 - Q3 2023

https://www.counterpointresearch.com/global-electric-vehicle-market-share/

Introduction			
Electric Vehicle	e Market		

EV trends

7kW家充桩 2.0

体积小功能强, 首桩权益随车附赠

宽高深218x345x153mm,无论挂璧,还是立柱安装都更加灵活。采 用分体式设计,在收线时能更方便缠绕在插枪件上,减少发生缠线问题。

20kW家用快充桩

三倍充电速度,在家就能极速快充

宽高深395x760x205mm, IP65的防护等级,远超IP54行业标准, 暴 雨和沙暴天气仍可安心使用,连粉尘都难以进入桩体。开启后声音可 小于50分贝,"静"享快速充电。

Introduction			
Electric Vehicle	e Market		

Grid side:

- inbalance electricity usage
- instability because of new energy

EV side:

- Battery size
- Range
- Charging rate
- Sizable battries
- Idle 90% of time

Introduction			
V2G			

Vehicle-to-grid (V2G): technology that enables energy to be pushed back to the power grid from the battery of an electric car.

Introduction			
Look at the da	ta		

Introduction			
Power Markets			

PJM is a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District of Columbia.

Introduction			
Power Markets			

The PJM power market is divided into three main segments: ¹

- Energy Market
- Capacity Market
- Ancillary services: help balance the transmission system matching supply and demand while maintaining a system frequency of 60 Hertz.
 - Regulation: control small mismatches between load and generation
 - Reserves: help to recover system balance by making up for generation deficiencies if there is loss of a large generator.

¹https://learn.pjm.com/three-priorities/buying-and-selling-energy

Introduction			
Frequency Reg	ulation Markets		

Introduction					
China practise					
	e 中华人民	共和国中央人民政府		Q 首页 简 繁 EN	登录 邮箱 无障碍
	首页 > 政	第 > 国务院政策文件库 > 国务院部门文件	字号: 默认 大 超大	打印 🗇 收蔵 🗘 留言 🖉 🛛 🙆 😋	8
	标题	国家发展改革委 国家德源局关于加快建设全国统 的指导意见	一电力市场体系 发文机关: 发展改革委 1	230,55	
	发文字号	发改体改〔2022〕118号	来 源:发展改革委回	防	
	主题分类	国土资源、能源电力	公文种类: 意见		
	成文日期	2022年01月18日			
		国家发展改革委 国家能源局	马关于加快建设全国统一电	且力市场体系的指导意见	

发改体改〔2022〕118号

(三)持续完善电力辅助服务市场。推动电力辅助服务市场更好体现灵活调节性资源的市场价值,建立健全调频、备用等辅助服务市场,探索用户可调节负荷参与辅助服务交易,推动源网荷储一体化建设和多能互补协调运营,完善成本分摊和收益共享机制。统筹推进电力中长期、现货、辅助服务市场建设,加强市场间有序协调,在交易时序、市场准入、价格形成机制等方面做好衔接。

Introduction			
V2G platform			

Research Question:

For a V2G platform:

- How to bid in the day-ahead regulation market?
- How to incentivize (by rebates) the EV drivers?

V2G platform

	Literature		
Table of Conte	nts		

Introduction

2 Literature

3 Model

5 Case study

	Literature		
Literature revie	W		

In the literature,

- V2G operations
 - Smart charging operations: Widrick et al. (2018), Wu et al. (2020), Chen et al. (2023)
 - Economic value of V2G: Broneske and Wozabal (2017), Zhang et al. (2021)
- EV operations
 - ▶ Location and network design: Mak et al (2013), He et al. (2021), Qi et al. (2023)
 - EV adoption: Avci et al. (2015), Lim et al. (2015)

In comparison, in our work,

- incorporate drivers' endogenous travel schedules as well as the platform rebates.
- coordinate a **pool of individual EV drivers**.

		Model		
Table of Conte	nts			

Literature

3 Model

5 Case study

		Model		
Model overview	I			

Develop tractable optimization model for V2G platform

		Model		
Model overview	I			

Develop tractable optimization model for V2G platform

	Model		
Driver side			

Longest path problem (on an acyclic graph):

$$\Pi(v) = \max_{\boldsymbol{x} \in \boldsymbol{\Lambda}} \sum_{a \in A \cup A'} v_a x_a, \quad \text{where } \boldsymbol{\Lambda} \equiv \left\{ \boldsymbol{x} \in \{0,1\}^{|A \cup A'|} : \sum_{a \in A \cup A'} b_{na} x_a = f_n, \quad \text{for } n \in N \right\}.$$

	Model		
Driver side			

- Each driver's utility vector as a realization of r.v. \tilde{v}
- Aggregate behavior reflected by:
 - ► $E[\Pi(\tilde{v})]$
 - $\blacktriangleright P(x_a(\tilde{v})=1)=y_a$
- Difficult problem!
 - If components of ν̃ follow independent two-point distributions, computing E[Π(ν̃)] is #P-complete [Hagstrom 1988]
- Alternative approach: distributionally-robust optimization
- Tight upper bound on $E[\Pi(\tilde{v})]$, given moments of \tilde{v}

	Model		
Driver side			

Persistency model

For a discrete optimization problem

$$Z^* = \max E_{ heta}(\max\{\mathbf{ ilde{c}}x: \mathbf{x} \in \mathcal{X}\})$$

If x is 0-1 decision variables, given mean and variance informance, the problem can be computed by the following concave maximization problem:

$$Z^* = \max\left\{\sum_i (\mu_i y_i + \sigma \sqrt{y_i(1-y_i)})
ight\}$$

y_i: persistency value

Natarajan K, Song M, Teo CP (2009) Persistency model and its applications in choice modeling. *Management Science* 55(3):453-469.

	Model		
Driver side			

Persistency model

Suppose \tilde{v}_a has mean μ_a and standard deviation σ_a .

$$\sup_{\tilde{v}_a} E(\Pi(\tilde{v})) = \max_{y \in \mathsf{conv}(\Lambda)} \sum_{a \in A} (\mu_a y_a + \sigma_a \sqrt{y_a(1 - y_a)})$$

- (Linear) reward longest-path problem \rightarrow (Concave) reward network flow problem on same graph
- SOCP fomulation

	Model		
Driver side			

Parameter Calibration

How to obtain μ_i and σ_i ?

- μ_i : expected utility of activity *i*
- σ_i : variance of utility of activity *i*

Inverse optimization:

$$\begin{split} \min_{\substack{(\mu,\sigma,\epsilon,\rho,\lambda)}} \epsilon \\ \text{s.t.} \quad & \sum_{a \in A \cup A'} \left(\mu_a \hat{y}_a + \sigma_a \sqrt{\hat{y}_a (1 - \hat{y}_a)} \right) + \epsilon \geq \frac{1}{2} \sum_{a \in A \cup A'} \left(\lambda_a + \sqrt{\lambda_a^2 + \sigma_a^2} \right) + \sum_{n \in N} f_n \rho_n \\ \lambda_a &= \mu_a - \sum_{n \in N} b_{na} \rho_n \text{ for } a \in A \cup A'. \end{split}$$

	Model		
Model overview			

Develop tractable optimization model for V2G platform

		Model		
Regulation ma	rket side			

AGC signal in a one-hour period of the PJM market

		Model		
Frequency regu	lation market s	ide		

Mileage-based performance

Requirement: performance index = fulfilled mileage/total mileage $\geq 1 - \eta$

Runyu Tang @ XJTU

		Model		
Regulation mar	ket side			

• Challenge: the AGC signal is stochastic

$$P\left(egin{array}{c} \psi ilde{\mathcal{K}}_t & - extstyle \ ilde{\mathcal{F}}_t \mathcal{C}_t \ ilde{\mathcal{F}}_t \$$

which is equivalent to the VaR expression

$$\hat{\phi}_{1-\eta}(\tilde{r}_t C_t - \psi \tilde{K}_t) \leq 0$$

We can use CVaR as a surrogate

$$\phi_{1-\eta}(\tilde{r}_t C_t - \psi \tilde{K}_t) \leq 0$$

	Model		
Value-at-Risk			

 $(1 - \eta)$ -VaR:

١

$$\bigvee_{1-\eta} \mathsf{A} \left(\mathsf{v}_0 + \mathsf{v}' \tilde{\mathsf{z}} \right) \triangleq \min \left\{ t : P \left(-\mathsf{v}_0 - \mathsf{v}' \tilde{\mathsf{z}} \leqslant t \right) \geqslant 1 - \eta \right\}$$

 $(1 - \eta)$ -CVaR: the average of the values that fall beyond the VaR

$$\mathsf{CVaR}_{1-\eta}\left(\mathbf{v}_{0}+\mathbf{v}'\tilde{\mathbf{z}}\right) \triangleq \min_{\mathbf{a}}\left(\mathbf{a}+\frac{1}{\eta}\mathsf{E}\left(-\mathbf{v}_{0}-\mathbf{v}'\tilde{\mathbf{z}}-\mathbf{a}\right)^{+}\right).$$

We can use forward and backward deviation to bound CVaR.

Chen, X., Sim, M., & Sun, P. (2007). A Robust Optimization Perspective on Stochastic Programming. *Operations Research*, 55, 1058-1071.

		Model		
Regulation mar	ket side			

Definition.

For a zero-mean random variable \tilde{z} , the forward and backward deviations are defined as follows, respectively:

$$\sigma^{f}(\tilde{z}) = \sup_{\theta > 0} \{ \frac{1}{\theta} \sqrt{2 \ln(E[\exp(\theta \tilde{z})])} \}$$

$$\sigma^{b}(\tilde{z}) = \sup_{\theta > 0} \{ \frac{1}{\theta} \sqrt{2 \ln(E[\exp(-\theta \tilde{z})])} \}$$

•
$$\sigma^f \ge \sigma$$
 and $\sigma^b \ge \sigma$.

- If \tilde{z} follows a Normal distribution, $\sigma^f = \sigma^b = \sigma$.
- For any $\theta \geq 0$, $P(\tilde{z} \leq \theta \sigma^{f}) \leq \exp(-\theta^{2}/2)$ and $P(\tilde{z} \geq -\theta \sigma^{b}) \leq \exp(-\theta^{2}/2)$.
- For any $\theta \geq 0$, $E[\exp(\theta \tilde{z})] \leq \exp \theta^2 (\sigma^f)^2/2$ and $E[\exp(-\theta \tilde{z})] \leq \exp \theta^2 (\sigma^b)^2/2$.

	Model		
Value-at-Risk			

Proposition.

Consider a random vector $\tilde{z} \in \mathbb{R}^{l}$ whose components are mutually independent, and have zero means and finite forward and backward deviations. Then,

$$\phi_{1-\eta} \left(\alpha_{0} + \sum_{i=1}^{I} \alpha_{i} \tilde{z}_{i} \right) \leq \alpha_{0} + \sqrt{-2 \ln \eta} \sqrt{\sum_{i=1}^{I} u_{i}^{2}}$$

$$where u_{i} = \max\{\sigma_{i}^{f} \alpha_{i}, -\sigma_{i}^{b} \alpha_{i}\}$$

$$\phi_{1-\eta} \left(\alpha_{0} + \sum_{i=1}^{I} \alpha_{i} \tilde{z}_{i} \right) \leq \alpha_{0} + \frac{1-\eta}{\eta} \sqrt{-2 \ln(1-\eta)} \sqrt{\sum_{i=1}^{I} v_{i}^{2}}$$

$$where v_{i} = \max\{-\sigma_{i}^{f} \alpha_{i}, \sigma_{i}^{b} \alpha_{i}\}.$$

$$(1)$$

Chen, Wenqing, Sim, Melvyn (2009). Goal-Driven Optimization. Operations Research, 57(2), 342-357.

		Model		
Regulation mar	ket side			

Proposition.

Let \bar{r}_t , σ_t^f and σ_t^b be the mean, forward deviation and backward deviation of \tilde{r}_t , respectively. Then either of the following is a sufficient condition that guarantees the CVaR constraint holds:

$$\bar{r}_t C_t - \psi M y_t + \sqrt{-2 \ln \eta} \sqrt{\psi^2 M y_t (1 - y_t) + (\sigma_t^f C_t)^2} \le 0$$
(3)
$$\bar{r}_t C_t - \psi M y_t + \frac{1 - \eta}{\eta} \sqrt{-2 \ln(1 - \eta)} \sqrt{\psi^2 M y_t (1 - y_t) + (\sigma_t^b C_t)^2} \le 0.$$
(4)

Chen, X., Sim, M., & Sun, P. (2007). A Robust Optimization Perspective on Stochastic Programming. *Operations Research*, 55, 1058-1071.

		Model		
Put everything	together			

Platform (leader)

$$\max_{\mathbf{C},\mathbf{s}} \sum_{t=1}^{T} \left(\bar{p}_t C_t - s_t y_t M \right)$$

s.t. $P\left(\psi \tilde{K}_t - \tilde{r}_t C_t \ge 0 \right) \ge 1 - \eta$, for $t = 1, \cdots, T$

Drivers (follower)

$$\max \sum_{a \in A} \left(\mu_a y_a + \sigma_a \sqrt{y_a (1 - y_a)} \right) \\ + \sum_{t=1}^T \left((\mu_t + s_t) y_t + \sigma_t \sqrt{y_t (1 - y_t)} \right)$$

		Solution approach	
Table of Conte	nts		

1 Introduction

2 Literature

3 Model

		Solution approach	
Bilevel Problem	ı		

Calculate the dual of drivers problem:

$$\begin{split} \min_{\rho} \frac{1}{2} \sum_{a \in A \cup A'} \left(\lambda_{a} + \sqrt{\lambda_{a}^{2} + \sigma_{a}^{2}} \right) + \sum_{n \in N} f_{n} \rho_{n}. \\ \text{s.t.} \ \lambda_{a} = \mu_{a} - \sum_{n} b_{na} \rho_{n}, \quad \forall a \in A, \\ \lambda_{a} = \mu_{a} + s_{a} - \sum_{n} b_{na} \rho_{n}, \quad \forall a \in A', \end{split}$$

Then the follower's problem can be converted to the following constraint:

$$\begin{split} \sum_{a \in A} \left(\mu_a y_a + \sigma_a \sqrt{y_a (1 - y_a)} \right) + \sum_{t=1}^T \left((\mu_t + s_t) y_t + \sigma_t w_t \right) \ge \\ \frac{1}{2} \sum_{a \in A} \left(\lambda_a + \sqrt{\lambda_a^2 + \sigma_a^2} \right) + \frac{1}{2} \sum_{t=1}^T \left(\lambda_t + \sqrt{\lambda_t^2 + \sigma_t^2} \right) + \sum_{n \in N} f_n \rho_n. \end{split}$$

		Solution approach	
Full model			

$$\begin{split} \max \ & \sum_{t=1} \left(\bar{p}_t C_t - u_t M \right) \\ \text{s.t.} \ & \sum_{a \in A} \left(\mu_a y_a + \sigma_a \sqrt{y_a(1-y_a)} \right) + \sum_{t=1}^T \left(\mu_t y_t + u_t + \sigma_t w_t \right) \geq \\ & \frac{1}{2} \sum_{a \in A} \left(\lambda_a + \sqrt{\lambda_a^2 + \sigma_a^2} \right) + \frac{1}{2} \sum_{t=1}^T \left(\lambda_t + \sqrt{\lambda_t^2 + \sigma_t^2} \right) + \sum_{n \in N} f_n \rho_n \\ & \sum_{a \in A \cup A'} b_{na} y_a = f_n, \quad \text{for } n \in N; \quad 0 \leq y_a \leq 1, \quad \text{for } a \in A \cup A' \\ & \lambda_a = \mu_a - \sum_{n \in N} b_{na} \rho_n \text{ for } a \in A \\ & \lambda_t = \mu_t + s_t - \sum_{n \in N} b_{nt} \rho_n \text{ for } t = 1, \cdots, T. \\ & \overline{r}_t C_t - \psi M y_t + \sqrt{-2 \ln \eta} \sqrt{\psi^2 M w_t^2 + (\sigma_t^T C_t)^2} \leq 0 \\ & w_t^2 + y_t^2 \leq y_t \text{ for } t = 1, \cdots, T \\ & s_t = \sum_{h \in H} \hat{s}_{h, th} \\ & \sum_{h \in H} \sum_{h \in H} s_{th} \in t_h \in H \\ & y_{th} \leq z_{th} \text{ for } h \in H \\ & u_{th} \leq z_{th} \hat{s}_{th} \text{ for } h \in H \\ & u_{th} \leq y_{th} \hat{s}_{th} \text{ for } h \in H \\ & \sum_{Y_t h} = y_t \end{split}$$

MISOCP: Mixed integer second-order cone programming

Runyu Tang @ XJTU

		Solution approach	
Computational	enhancement		

Denote by \underline{y}_t the optimal flow for charging arc $t \in A'$ in the pricing optimization model with extra constraints $s_{t'} = 0$, for $t' \in A' \setminus \{t\}$. Similarly, denote by \overline{y}_t the optimal flow for charging arc $t \in A'$ in the pricing optimization model with the extra constraints $s_{t'} = \overline{s}$, for $t' \in A' \setminus \{t\}$. Then, the following holds:

Proposition.

The optimal flow for arc $t \in A'$ satisfies $\underline{y}_t \leq y_t \leq \overline{y}_t$.

We can add these valid inequalites during the branch-and-bound process to reduce the search space.

Granot F, Veinott AF (1985) Substitutes, complements and ripples in network flows. *Mathematics of Opereations Research* 10:471-497

			Case study	
Table of Conte	nts			

1 Introduction

2 Literature

3 Model

		Case study	
Case Study			

Overall, the fleet of 200 EVs generates a monthly profit of 220.60 (per EV) for the platform, and 20.52 in rebates on average for each driver. Compared with the case of not offering rebates, offering such incentives helps improve the platform's profit by 4.37%.

optimal rebates

optimal bids

optimal persistency values

			Case study	
Sensitivity Ana	lysis			

Impact of Fleet Size

Fleet size	Profit per EV (with rebates)	Profit per EV (without rebates)	Improvement	Total rebate (monthly)
100	216.063	205.475	5.15%	23.163
150	219.021	209.301	4.64%	23.193
200	220.598	211.358	4.37%	20.517
250	221.587	212.652	4.20%	20.514
300	222.271	213.544	4.09%	20.589
350	222.790	214.197	4.01%	20.499
400	223.169	214.698	3.95%	20.499

Observation: Both increasing the participating EV fleet size and offering plug-in rebates help improve the platform's profits due to a pooling effect. Furthermore, the two work as strategic substitutes in improving profits.

Runyu Tang @ XJTU

			Case study	
Sensitivity Ana	lysis			

Comparison of different chargers' power rates

Charging rate (kW)	Profit per EV (with rebates)	Profit per EV (without rebates)	Improvement	Total rebates (monthly)
7.2	154.360	152.178	1.43%	11.028
10	220.598	211.358	4.37%	20.517
15	346.865	317.038	9.41%	45.000
20	479.788	422.717	13.50%	62.811
30	756.814	634.075	19.36%	89.781
40	1042.483	845.434	23.31%	111.582

Observation: Upgrading the chargers' powering rating is a strategic complement with offering rebates, and can benefit EV drivers even more than the platform.

			Case study	
Sensitivity Ana	lysis			

Impact of Baseline Utility Value $\bar{\mu}$

$ar{\mu}$ (in dollars) \mid	Profit per EV (with rebates)	Profit per EV (without rebates)	Improvement	Total rebate (monthly)
100	239.679	211.358	13.40%	27.042
150	227.931	211.358	7.84%	27.336
200	220.598	211.358	4.37%	20.517
250	216.205	211.358	2.29%	17.265
300	213.448	211.358	0.99%	10.413
400	211.403	211.358	0.02%	1.509
500	211.358	211.358	0.00%	0.000

Observation: When EV drivers have lower valuations for using their EVs, they become more sensitive to rebates. Consequently, the platform offers higher rebates and thereby obtains higher profits.

Runyu Tang @ XJTU

			Case study	
Computational	performance			

To generate different instances, we first apply agglomerative hierarchical clustering on the travel patterns of residents.

Travel Pattern Clusters in CHTS Sample

			Case study	
Computational	performance			

Computational Performance

Comp Cluster 1	osition Cluster 2	without Time(s)	valid in Gap	equalities % Solved	with Time(s)	valid inec Gap	ualities % Solved
0.4	0.6			100%	12.46	•	100%
0.4	0.0	174.02	-	100%	42.40	-	100%
0.45	0.55	202.68	-	100%	58.31	-	100%
0.5	0.5	298.45	2.38%	94%	54.78	-	100%
0.55	0.45	490.88	2.23%	86%	102.80	-	100%
0.6	0.4	676.23	2.41%	62%	171.98	2.13%	98%
0.65	0.35	758.29	2.46%	40%	330.58	2.20%	86%
0.7	0.3	994.54	2.60%	18%	473.09	2.29%	64%

When Cluster 2 takes a larger proportion, the platform will offer less (often close to zero) rebates, and the corresponding optimization problem becomes easier to solve. Yet, for all instances, the tightened formulation is computationally tractable.

Runyu Tang @ XJTU

			Case study	
Model extensio	ns			

Workplace charging

Observation: Two alternative strategies to promote V2G participation, installing workplace chargers and providing plug-in rebates, work as strategic substitutes in improving the platform's profits.

			Case study	
Model extensio	ns			

Workplace charging

			Case study	
Model extensio	ns			

Workplace charging

Composition			without workplace charger				with workplace charger			
C2	$\mathbf{C1}$	C3	\mathbf{Reb}	\mathbf{NoReb}	\mathbf{Imp}	\mathbf{TotReb}	\mathbf{Reb}	NoReb	\mathbf{Imp}	\mathbf{TotReb}
0.2	0.3	0.5	214.983	208.983	2.87%	17.256	235.397	234.277	0.48%	5.975
0.2	0.4	0.4	212.127	205.499	3.23%	18.019	229.541	227.988	0.68%	5.250
0.25	0.3	0.45	214.847	206.785	3.90%	21.855	238.389	237.395	0.42%	5.437
0.25	0.35	0.4	209.651	199.304	5.19%	23.522	231.500	230.339	0.50%	3.617
0.3	0.2	0.5	215.696	208.607	3.40%	17.113	248.120	247.629	0.20%	3.947
0.3	0.25	0.45	214.254	205.938	4.04%	20.525	241.374	240.532	0.35%	4.878
0.3	0.35	0.35	209.174	199.223	4.99%	26.711	235.252	233.694	0.67%	4.819
0.3	0.4	0.3	209.210	195.533	6.99%	24.971	232.267	230.987	0.55%	4.246
0.3	0.3	0.4	213.574	202.351	5.55%	20.603	236.926	235.699	0.52%	2.984
0.345	0.227	0.428	213.709	206.029	3.73%	21.686	244.611	243.896	0.29%	2.604
0.35	0.25	0.4	211.672	200.108	5.78%	23.428	246.446	245.892	0.23%	4.682
0.35	0.2	0.45	213.592	203.307	5.06%	19.276	247.127	246.222	0.37%	3.980
0.35	0.3	0.35	210.982	198.612	6.23%	21.965	240.995	239.821	0.49%	3.986
0.4	0.2	0.4	213.157	202.176	5.43%	23.210	249.396	248.726	0.27%	3.367
0.4	0.25	0.35	212.019	200.159	5.93%	21.898	246.158	245.814	0.14%	3.871
0.4	0.3	0.3	209.972	195.990	7.13%	24.701	241.781	240.880	0.37%	4.435
0.5	0.2	0.3	211.905	191.842	10.46%	26.576	249.109	248.226	0.36%	4.069

Table 6 Comparison of different traveling patterns

Observation: The benefits of offering workplace chargers are robust with respect to the population composition of drivers.

Runyu Tang @ XJTU

			Case study	
Model extensio	ns			

Alternative objective

We consider the case where the platform is jointly owned by the drivers.

$$\begin{aligned} \max_{\mathbf{C},\mathbf{s},\rho} \quad & \sum_{a \in \mathcal{A}} \left(\mu_a y_a + \sigma_a \sqrt{y_a (1 - y_a)} \right) + \sum_{t=1}^T \left((\mu_t + s_t) y_t + \sigma_t \sqrt{y_t (1 - y_t)} \right) \\ & \quad + \frac{1}{\mathbb{K}M} \sum_{t=1}^T \left(\bar{p}_t C_t - s_t y_t M \right) \\ \text{s.t.} \quad & \sum_{t=1}^T \left(\bar{p}_t C_t - s_t y_t M \right) \ge 0, \\ & \quad \text{Other Constraints.} \end{aligned}$$

			Case study	
Model extensio	ns			

Alternative objective

Observation: As more EV drivers become stakeholders in the community V2G platform, the optimal rebate schedule more closely resembles the pattern of regulation prices.

			Case study	
Model extension	ons			

State-of-charge guarantees

Within each hour that the EV is plugged in, the platform will ensure that the EV is charged at an *average* rate of ω kW, and that the EV will not lose charge (i.e., end the hour with lower state-of-charge than it started) with at least $1 - \hat{\eta}$ probability (e.g., 95%).

$$P\left(\omega \tilde{K}_t - \tilde{\gamma}_t C_t \ge 0
ight) \ge 1 - \hat{\eta},$$

 $P\left((\psi - \omega) \tilde{K}_t - \tilde{r}_t C_t \ge 0
ight) \ge 1 - \eta.$

			Case study	
Model extension	าทร			

Observations:

From the EV owner's perspective, requiring the platform to maintain state of charge throughout periods of V2G participation can lead to reduction in rebates.

Runyu Tang @ XJTU

			Conclusion
Table of Conte	nts		

1 Introduction

2 Literature

3 Model

5 Case study

			Conclusion
Main Take-awa	y		

- Bilevel problem for platform-driver game
 - Bilevel convex optimization
 - Persistency model for drivers' behavior (temporal substitution)
 - Dist-Robust Optimization for chance constraint
 - Inverse optimization for parameter calibration
- Observations
 - ► Mismatch between the availability of regulation power (parked EVs) and the regulation revenue. → offering rebates.
 - The infrastructure enhancements of increasing the power rating of chargers and providing workplace chargers work as a *strategic complement* and a *strategic substitute* with the pricing strategy of offering rebates.
 - In an alternative, community-based business model, the optimal rebates will be higher.
 - SOC guarantee generally lowers the amount of rebates offered to EV owners, and especially so when the nominal charging rate is low.