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What is bandit problem

\ \)
Mo ch%rning a T-maze: ch
Theunice faced the dilemma of chozg?r?g to
go left or right after ﬂtarting in the bottom

time at whic ey would find food. N
“Two-arm@ndit" machine: @
Humans,Ceuld choose to pull either the | ‘;%

or thegfight arm of the machine, each {\
gi\@a random pay-off with the \‘?}
distribution of pay-offs for each arm

unknown to the hu@n player.(‘bandit’

because they eil.\)gour money) -

of a T-shaped m‘%»\'hot knowing each X
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* You haveﬁple treatment options for ca&r X.

° Canc@)atients arrive sequentially i@ur clinical trial. @

° Ho@o you treat them? &
oQ@t to save as many lives as ;{&ie overall. (\Q




Example: Feynman's Restaurant Problem

RN ,
® A rest a&\\.ﬁas multiple dishes. ~§..\, ‘~§~\¢
° Ever&a@é you come and try a dish y @ a noisy observation of its‘&’@.
Yeunwant to maximize the total q %of food you consume. @
O O O
x> X0 o




Example: A/B Testing

Whether the 'buy ignow' button should be placed at the top of the product page or at
the bottom. ‘o0~ . 6 N

N N N
® Intra al' A/B testing, the objectiv. he statistician is to decide v@
webaﬁs better.

° n using a bandit algorithm, \) is no need to end the trial. @jgorithm
Q\utomatically decides when on%\ersmn of the site should be shzﬁmore often
b\ than another. N b\

N N O

w 3
O © e
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N O N
X0 X0 x>
We need to Iearq\gym past to predict the future a@optimze.

‘ "
N N

Core propertie \ \ *’
° Seque@v taking actions of unknow@y @
S

° Thﬁ back provides information @t quality of chosen action ¢

° e is no state
| D B
h& special tractable case of relﬁ&ement learning. L\,
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Key Elements of All of These Problems
\ \)

N
) )
\"Z;(\ \‘2\;(\ \‘?IS\

Key feature of «tk&)lution: balancing exploitati@d exploration.

e
° Explo@ use the current knowledg@f}'a us on the action that seer@’é’}?eld

rewards.

the
° \‘pation: explore further the ot@"\bctions to identify with bette@ve ision
h action is actually the be <\
X0

N
X \.’3\
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Multi-armed bandit
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Multi-armed bandit

-0.5,-0.5,-0.5
E[c] = —0.5
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Mathematical Formulation

, each with a reward distri %n pi.

[ ] K%‘n
@Q each period t =1,..., ’}I an arm A; € {1,...,k},{'r$fa%erve a

T
reward X; ~ pa,. b\

e History: Ht_\y (Al,xl,Az,xz,...,At_l,xﬁ& \9
e Policy: T 1) =A:

| R N
e &“@ &@ “’s©
& \g@ )3

or equvialently, to&inimize the regret Q

N
s@ mﬂin E

S
AS ¢ A\
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What is a good policy

® Bad regret Eg\ﬂxe keep performing suboptim‘a@nd the regret grows Iinearly\§\>
> .k}‘,\Regret( T))T —-c>0. %’" ‘*’
* Goo ’@;t = we eventually learn to @’ptimally and the regret gro@
s Q&early in T Q% {
@(&Namely, Regret(T)/T — Oé\g
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Pure Greedy policy

Try each arm once, Then always pull the arm that appears the best (highest average

S
reward to date) X\ « 3
)

This can faj acularly: -§-\
® Consi two-armed bandit: x; ~ B'E;@é) xp ~ Ber(0.4). \g@

® With probability 0.16, we start ou eing 0 for arm 1 and 1 for

% we always pull arm 2 and ’\mulate 0.2 regret at each step§
We have linear regret: Regret("T) > cT. N

MAB: Introduction
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Explore then commit policy

\ \)
O@mation phase: try each aer%mes "\@

\{bEproitation phase: for t = k‘kg? 1,...,n, pull the arm with t%&lghest average

reward.
o \\>‘ ¢ \0 N \\>

1: Input m.
2: In round t choose action

A — (tmodk)+1, if t <mk;
' argmax, fi;(mk), t>mk.

(ties in the argmax are broken arbitrarily)

= -
where fi;(t, \’ JHAs = itxs/ 5 H{@*\} denotes the empirical ave‘f@e‘*x
reward of arm// up ) to time ¢, !._&:\/ ‘,’:‘S\W‘

Q)
a\dh A\
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Explore then commit policy

3
/\é ,\@

Oy
&)
Rggi\at “analysis (b\ ’ (&\

When ETC is interacting with any 1-subgaussian bandit and 1 < m < n/k,

k k mA2
R,,SmZA,-—i—(n—mk)ZA,—exp (_ 41).

i=1 i=1

where A; = p* — p; is the suboptimality gap between the mean of action i and the

optimal action.

o-Subgaussian _40 | =0): E(exp(AX)) < exp@2/2),\v9\
P(X > e) < exp(—e 2/20@

Property
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Concentration inequality

ities provide bounds on how

In pr %Il ty theory, concentration me@l

eviates from some value y, its expected value).

Markov inequality (X nonnegs&(;& a>0): \{b
‘\\'\“ Pr(X > a).@

a D
e Ch @s inequality (E(X) and Vé@inite): ,«§©
Q % Var[X] @
\‘Z;(\ Pr@% N EDER AN

N
e Hoeffding's |®uallty (a; < X; < bj) \ \9
@?’\ P (S, —E[S]>t)<@ 2 ) ({}j*x
S 5 .,% )
(\ - o\
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Proof Assume without loss of generality that the first arm is optimal, which
means that py = p* = max; ;. By the decomposition given in Lemma 4.5, the
regret can be written as

Ro= Y AET). (61)
i=1

In the first mk rounds, the policy is deterministic, choosing each action exactly
m times. Subsequently it chooses a single action maximising the average reward
during exploration. Thus,

E[Ti(n)] = m + (n — mk)P (Amk+1 = 1)
<t (= mb)P (i(nk) > maxps(mk)) . (62)
The probability on the right-hand side is bounded by
P () > o)) < P (k) s )
=P (pi(mk) — pi — (I (mk) — 1) > A) .
The next step is to check that f;(mk) — ps; — (11 (mk) — 1) is 4/2/m-subgaussian,

which by the properties of subgaussian random variables follows from the
definitions of (fi;); and the algorithm. Hence by Corollary 5.5,

2
P (aa(mk) — 55 — (k) + pn > A) < exp (—'"f ) RNCE)

Substituting Eq. (6.3) into Eq. (6.2) and the regret decomposition (Eq. (6.1))
gives the result. O

Introduction



Explore then commit policy

\ \) \)
N o o
R&et analysis \?}

\ k K mA2
_i:\\}éngm;A;vL(n—mk) %?exp(— 4A’2)

This ill T%’gte exploration-exploitation t &Hépff! Q
o ore too much (m large) the first term is large. (\

\(bExploit too much (m small) ﬁ& the second term is large. \,{b

If we choose m =< #?/3, then the regret R, = O(K@‘o’).

Note. the choi%io m requires the knowledge 9‘&
© ©

"\l a\Ji
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e-greedy policy

probablity €;, explore an ar@ifermly at random. AN

[
\fbﬁgith probablity 1 — ¢, expl@e arm with the highest rewa@ far.

Again, €; trade-off between exploration and exploitation.
If e, < t~1/3(K )1/3, then the regret \'Q

@ 2/3@g t) 1/3 @“&‘x

S

(b@mllar regret rate to ETC
But it does not require know\g n, the regret bound holds fors\y t (anytime

algorithm) \\."
® the exploribgn is spread more evenly ov§r than ETC ..*x

The regre TC and e-Greedy aren't tha t, because they do not ad i
eprorat@n to the observed data. AN

»\c» R

Runyu Tang MAB: Introduction



e-greedy policy

. A:1,@6,7,8.9,1o , “I B o
* Pr{Qa} ~ N(a(2).1) oo TV 4 TR
The al policy is to v o .

s choose a3z, s<
But we don't know that

initially \'Q ?

-
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e-greedy policy

» N

@:\ \) \)
Exa <\Q /x{\
X0 N4
Average performance of e-greedy £ 0L A N
action-value me@ds on the 10-armed N v an .
tested .i.x . oy
® ¢ — @
[ ) % 1 @”% ‘ 1 50 Sls:ops 7% 1000
Q_ 0.01 @\N 100%
’?&rages over 2000 runs each wi’c‘hv s
1000 steps All methods used sample opana ] - ~
averages as th ction-value e e e
estimates @ @ o
§‘ “‘:' ; 50 s::ﬂps 73’0 1000

&
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Upper Confidence Bound policy

Based&t e idea of “optimism in th of uncertainty.’
PR

e
A

Reward distribution

\:

..... A(a)

----------------- Fu(a)
A(a)
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Upper Confidence Bound policy

S\ S | N
Bas@ the idea of “optimism in ti(@e of uncertainty.” o@
K@ ithm: \(b \{z,s

® compute the empirical mean of each arm and a confidence interval;

® use the up \onfidence bound as a proxy‘%}g?oodness of arm. ’\\,\>

Note: confj e ‘interval chosen so that trL@ an is very unlikely to be ouf?g@g

32
confidenc rval A(”i A:i\.,,,}

K 4 R ¢

1: Input k and §

2: fortel,...,ndo

3: Choose action A; = argmax; UCB;(t — 1,46)

4 Observe reward X; and update upper confidence bounds
5

: end for

.\ R\ - AN
(\“ \ \X
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S ) X
S O O
\,‘@Ea\n use \é\ \{é’j\\

A ucs(e-10) = e —Q§> e N
. © © ©
Why? "% ”3} Q‘S’
Fix i@m i, with probability at 1 — @y the subgaussian assumpti{@we have
X0 \(é\ 1 4
lpi — pi(t)] < 2|°g(%/Ni(t)
N R ®
~§© )~§© Q"




UCB policy

O \)
g@nalysis /\Cb )
7 > AA

Consider a UCB Algorithm on a stochastic k-armed 1-subgaussian bandit problem. For
any horizon n, if § = 1/n?, then

u 16logn
Ro<3Y o Y 0En
1

i=1 i:A;>0

Enosing 6 = 1/n2 we have R, =\?(\/7Kn logn). (Recall that ETE s o(m?/3)

regret.)
N N
We still neeé nowledge of n. In practice wf)ipay use \ \
\%\m

UCB;( =pi(t—1)+a 2'2 i) V\Q@tumng parameter o > 0.

Runyu Tang MAB: Introduction




<

S $
N
D NN ®
15 UCB c=2 . >
v\l,ﬂ'*ﬂw’mw T itk RO A i
1 N E-greedy £=0.1
X




Bayesian bandit

Q@ ,\o) »\o)

\' So far we have made no assu}ptlons about the reward dlstrlbxlon R
® Bayesian b s exploit prior knowledge of ;@rds p(R) \9
® They @}&e posterior distribution of@}ﬁs p(R|H¢) -*x
® Use ior to guide exploration @
@‘e‘s (§3: S
(‘ N
bR,V 3 (par —uAt)] o
t=1
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Thompson Sampling

&a‘npson Sampling is an aIterr@ Bayesian method with gm@xqbgret
@guarantees
e Before the game starts, the Iearner chooses a prior over a set of possible bandit\
environmen@n each round, the learner sa@s an environment from the \\/

posteri zﬁkﬁacts according to the opti tion in that environment. “§~
© (Y &

1: Input Bayesian bandit environment (&, B(£),Q, P)
2 fort=1,2,...,ndo
3: Sample V¢ NQ(-|A1,X1,...,At_1,Xt_1)
4: Choose A; = argmax;¢ ) pi(Vt)
5: end for
- 3 {" ¥ ‘"' x4
Note. thg*@is to optimize Bayesian reg@&yé‘@ w. \X@(

é
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Thompson Sampling

&

7
«

<\ 7, Let's consider a Beta distribution prior over the mean rewards of the Bernoulli bandits:

L'(ak + Br)

p(Ok) = 021 (1 — @) Px—1
() T(ar)L(Be) * ( ) T(n) = (n— 1)! ;&:\\'Q
D)
{ p(6ID) p(DI6)p(8) *')
O nD)
<\ The posterior is also a Beta! Because beta is conjugate distribution for the Bernoulli
\‘2} distribution.
A closed form solution for the bayesian update, possible only for conjugate distributions!
(o, Br) ifx, #k A
b (_ . 1
(00, B {(ak,ﬂk)+(rt,1—n) if 2, = k. X
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Thompson Sampling

S S S
hgret analysis \'@ \'{z}

Theorem 3.

Let (£,B(€), Q, P) be a k-armed Bayesian bandit environment such that for all v € £
and i € [k], the distribution P,; is 1-subgaussian (after centering) with mean in [0, 1].
Then the policy m of Thompson sampling satisfies

BR,(m, Q) < Cy/knlogn

where C > 0 is a universal constant.

S N D
o & &
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S

O
o @ @

® ETC: O(n?/3) regret
. e—greedy:.@/:") regret s\\\}

A
. UCB:@'{X‘%%g n) regret ”’&'x “&"
o Tth% sampling: O(y/nlogn) re@ ) @
S S
o o
@ x§
Interactive bandits: N
https://pavlov,tech/2019/03/02/animated- ti-armed-bandit-policiesA
e/ Bl R N Polici R

4 + SR
*@ &© "s@‘

K 3 =‘\* é
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Other bandits

[ Adversarixkb}ndits: the learner must cho Qn action a; and observe a re@
re. Th hi?e sary chooses the reward d@’?ﬂ ion. “&"
° Con@al bandits: the learner obs context x; at each time §@he
ge must choose an action a; serve a reward ry. N\
(0]

I
-stati bandits: th distributi h :
\é@ stationary bandits se\'$v rd distribution changes ove‘r\@}
O N
A\
&@i
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O S O
\"Z)o "§\ \‘?:‘(\

S O

X\
e Lattimor % & Szepesviari, C. (2020). %’t Algorithms. Cambridge Unu&
Press e‘ﬂ';:s ://tor- lattlmore com@lloads/book/book pdf
i

e Slivkins,"A. (2019). Introduction t Armed Bandits. ArXiv. v“%
s://arxiv.org/pdf/190 72.pdf
S S
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MAB in dynamic pricing

\ \ N\
@e%ng horizon: [0, T] ‘(\% <\

Demand: Poisson process )\tg A(p(t)).
e Feasible p(i@[g, Pl ) \'Q . \\>
® |nvento @gl: X \ -&.x
Algorithm'@ @ @
. @ning” phase (exploration) ofifength 7 is used first, in which @'@r\?&es are
] Q Q
\(bThen, a “pricing” phase (exp’[&ation) fixes a “good” price ba&on demand
observations in the first phase.

X N N
Omar Besbes,A eevi, (2009) Dynamic Pricing Wi \t Knowing the Demand FunctiW
Bounds and @ Optimal Algorithms. Operations ch 57(6):1407-1420. Q. i
N s A\
& 3 A
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MAB in dynamic pricing

A \ \
ALGORITEM 1. 7(7, K) "\ ”\
Step 1. Initialization: > \
(a) Set the learning interval to be [0, 7], and the num- © \{b'
ber of prices to experiment with to be k. Put A =7/«k.
(b) Divide [ p, p] into k equally spaced intervals and
let {p;,i=1,..., k} be the left endpoints of these intervals. Q
Step 2. Learning/experimentation: \

If no more units are in stock, apply p,, up until time 7" and a nd )\ () _ n)\( Then

(a) On the interval [0, 7] apply p; from ¢,_, = (i—1)A B
to t;=iA,i=1,2,..., K, as long as inventory is positive. @ enote n as the market Sl

STOP.
(®) Compute the regret is asymptoti optlmal

- total demand over [£,_;,#;) . -

dp)=———— " i=look <\ e Set 7 < n~Y/* and (@1/4The regret
L » . 1/2

Step 3. Optimization: bound locates in o2 C(":ﬁ/’? ]

Compute  p* =argmax{p,d(p,)},
1<i<k
(©) ¢ 0

p° =argmin |d(p,) — x/T,

I<i<k

and set p =max{p°, p“}. (10) @
A
% ;

&“

Step 4. Pricing:
N7

Runyu Tang
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Some of challenges
\ \)

O
e @

ics
® Dynamic Qrit{?ag 2O
® Product tment % -.&.x
e Adve placement @’ @
Opera &g concerns: {Qi ’“%
OQM e switches (limited numbe &%ces to test))

s®non—stationary reward (demand changes over time)

® switching go%cost of switching prices) ) Q . \>
§ RN R
g@ ,x@ ,‘3’@[
A A AN
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People to follow
\ \)

o & o
0 0 24
* Simchi Levihbtp: //slevil.mit.edu/ -X) O
® Assaf ’iif’.\*https ://www0.gsb.col “%’\edu/faculty/azeevi/ "&‘x
° Xj ttps://pages. stern.n&@/*xcheni%/ ,‘Q’©
° yuan Chen: http://indivi .utoronto.ca/ningyuanch

N

unzong Xu: https://xyz. t>edu/research
0 @ X
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