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What is bandit problem

Mouse learning a T-maze:
The mice faced the dilemma of choosing to
go left or right after starting in the bottom
of a T-shaped maze, not knowing each
time at which end they would find food.
“Two-armed bandit” machine:
Humans could choose to pull either the left
or the right arm of the machine, each
giving a random pay-off with the
distribution of pay-offs for each arm
unknown to the human player.(‘bandit’
because they steal your money)
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Example: clinical trials

• You have multiple treatment options for cancer X.

• Cancer X patients arrive sequentially into your clinical trial.

• How do you treat them?

• Want to save as many lives as possible overall.
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Example: Feynman’s Restaurant Problem

• A restaurant has multiple dishes.

• Every time you come and try a dish you get a noisy observation of its quality.

• You want to maximize the total quality of food you consume.
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Example: A/B Testing

Whether the ’buy it now’ button should be placed at the top of the product page or at
the bottom.

• In traditional A/B testing, the objective of the statistician is to decide which
website is better.

• When using a bandit algorithm, there is no need to end the trial. The algorithm
automatically decides when one version of the site should be shown more often
than another.
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Key Elements of All of These Problems

We need to learn from past to predict the future and optimze.
Core properties:

• Sequentially taking actions of unknown quality

• The feedback provides information about quality of chosen action

• There is no state

It’s a special tractable case of reinforcement learning.
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Key Elements of All of These Problems

Key feature of the solution: balancing exploitation and exploration.

• Exploitation: use the current knowledge to focus on the action that seems to yield
the highest rewards.

• Exploration: explore further the other actions to identify with better precision
which action is actually the best.
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Multi-armed bandit

Optimal policy
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Multi-armed bandit

Learn a policy
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Mathematical Formulation

• k arms, each with a reward distribution pi .

• In each period t = 1, . . . ,T , we pull an arm At ∈ {1, . . . , k}, and observe a
reward xt ∼ pAt .

• History: Ht−1 = (A1, x1,A2, x2, . . . ,At−1, xt−1).

• Policy: πt(Ht−1) = At

The objective is

max
π

E

[
T∑
t=1

xt

]
or equvialently, to minimize the regret

min
π

E

[
T∑
t=1

max
i

pi − pAt

]
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What is a good policy

• Bad regret = we keep performing suboptimally and the regret grows linearly T .

▶ Namely, Regret(T )/T → c > 0.

• Good regret = we eventually learn to act optimally and the regret grows
sub-linearly in T

▶ Namely, Regret(T )/T → 0.
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Pure Greedy policy

Try each arm once. Then always pull the arm that appears the best (highest average
reward to date).
This can fail spectacularly:

• Consider a two-armed bandit: x1 ∼ Ber(0.6), x2 ∼ Ber(0.4).

• With probability 0.16, we start out by seeing 0 for arm 1 and 1 for arm 2.

• So we always pull arm 2 and accumulate 0.2 regret at each step.

• We have linear regret: Regret(T ) ≥ cT .
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Explore then commit policy

• Exploration phase: try each arm m times

• Exploitation phase: for t = km + 1, . . . , n, pull the arm with the highest average
reward.

where µ̂i (t) =
∑t

s=1 I{As = i}xs/
∑t

s=1 I{As = i} denotes the empirical average
reward of arm i up to time t.
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Explore then commit policy

Regret analysis

Theorem 1.

When ETC is interacting with any 1-subgaussian bandit and 1 ≤ m ≤ n/k,

Rn ≤ m
k∑

i=1

∆i + (n −mk)
k∑

i=1

∆i exp

(
−
m∆2

i

4

)
.

where ∆i = µ∗ − µi is the suboptimality gap between the mean of action i and the
optimal action.

σ-Subgaussian (E[X ] = 0): E (exp(λX )) ≤ exp(−σ2λ2/2),∀λ.
Property: ∀ϵ > 0, P(X > ϵ) ≤ exp(−ϵ2/2σ2).
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Concentration inequality

In probability theory, concentration inequalities provide bounds on how a random
variable deviates from some value (typically, its expected value).

• Markov inequality (X nonnegative, a > 0):

Pr(X ≥ a) ≤ E(X )

a

• Chebyshev’s inequality (E (X ) and Var(X ) finite):

Pr(|X − E[X ]| ≥ a) ≤ Var[X ]

a2
,

• Hoeffding’s inequality (ai ≤ Xi ≤ bi ):

P (Sn − E [Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
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Proof
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Explore then commit policy

Regret analysis

Rn ≤ m
k∑

i=1

∆i + (n −mk)
k∑

i=1

∆i exp

(
−
m∆2

i

4

)
.

This illustrate exploration-exploitation tradeoff!

• Explore too much (m large) then the first term is large.

• Exploit too much (m small) then the second term is large.

If we choose m ≍ n2/3, then the regret Rn = O(Kn2/3).
Note. the choice of m requires the knowledge of n.
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ϵ-greedy policy

• With probablity ϵt , explore an arm uniformly at random.

• With probablity 1− ϵt , explore the arm with the highest reward so far.

Again, ϵt trade-off between exploration and exploitation.
If ϵt ≍ t−1/3(K log t)1/3, then the regret

Rt = O(t2/3(K log t)1/3)

.

• Similar regret rate to ETC

• But it does not require knowing n, the regret bound holds for any t (anytime
algorithm)

• the exploration is spread more evenly over time than ETC

The regret of ETC and ϵ-Greedy aren’t that great, because they do not adapt
exploration to the observed data.
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ϵ-greedy policy

Example

• k=10

• A=1,2,3,4,5,6,7,8,9,10

• Pr{r |a} ∼ N(q(a), 1)

The optimal policy is to
always choose a3,
But we don’t know that
initially
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ϵ-greedy policy

Example

Average performance of ϵ-greedy
action-value methods on the 10-armed
tested

• ϵ = 0

• ϵ = 0.1

• ϵ = 0.01

Averages over 2000 runs each with
1000 steps All methods used sample
averages as their action-value
estimates
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Upper Confidence Bound policy

Based on the idea of “optimism in the face of uncertainty.”
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Upper Confidence Bound policy

Based on the idea of “optimism in the face of uncertainty.”
Algorithm:

• compute the empirical mean of each arm and a confidence interval;

• use the upper confidence bound as a proxy for goodness of arm.

Note: confidence interval chosen so that true mean is very unlikely to be outside of
confidence interval
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UCB policy

We can use

UCBi (t − 1, δ) = µ̂i (t − 1) +

√
2 log(1/δ)

Ni (t − 1)

Why?
Fix an arm i , with probability at 1− 2δ, (by the subgaussian assumption), we have

|µi − µ̂i (t)| ≤
√
2 log(

1

δ
)/Ni (t)
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UCB policy

Regret analysis

Theorem 2.

Consider a UCB Algorithm on a stochastic k-armed 1-subgaussian bandit problem. For
any horizon n, if δ = 1/n2, then

Rn ≤ 3
k∑

i=1

∆i +
∑

i :∆i>0

16 log n

∆i
.

Choosing δ ≍ 1/n2, we have Rn = O(
√
Kn log n). (Recall that ETC has O(n2/3)

regret.)

We still need the knowledge of n. In practice, we may use

UCBi (t − 1, δ) = µ̂i (t − 1) + α
√

2 log t
Ni (t−1) with a tuning parameter α > 0.

Runyu Tang MAB: Introduction 23 / 35



UCB policy
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Bayesian bandit

• So far we have made no assumptions about the reward distribution R

• Bayesian bandits exploit prior knowledge of rewards p(R)

• They compute posterior distribution of rewards p(R|Ht)

• Use posterior to guide exploration

BRn = E

[
n∑

t=1

(µA∗ − µAt )

]
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Thompson Sampling

• Thompson Sampling is an alternative Bayesian method with similar regret
guarantees.

• Before the game starts, the learner chooses a prior over a set of possible bandit
environments. In each round, the learner samples an environment from the
posterior and acts according to the optimal action in that environment.

Note. the goal is to optimize Bayesian regret now.
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Thompson Sampling
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Thompson Sampling

Regret analysis

Theorem 3.

Let (E ,B(E),Q,P) be a k-armed Bayesian bandit environment such that for all ν ∈ E
and i ∈ [k], the distribution Pνi is 1-subgaussian (after centering) with mean in [0, 1].
Then the policy π of Thompson sampling satisfies

BRn(π,Q) ≤ C
√

kn log n

where C > 0 is a universal constant.

Runyu Tang MAB: Introduction 28 / 35



Common algorithms

• ETC: O(n2/3) regret

• ϵ−greedy: O(t2/3) regret

• UCB: O(
√
n log n) regret

• Thompson sampling: O(
√
n log n) regret

Interactive bandits:
https://pavlov.tech/2019/03/02/animated-multi-armed-bandit-policies/

Runyu Tang MAB: Introduction 29 / 35

https://pavlov.tech/2019/03/02/animated-multi-armed-bandit-policies/


Other bandits

• Adversarial bandits: the learner must choose an action at and observe a reward
rt . The adversary chooses the reward distribution.

• Contextual bandits: the learner observes a context xt at each time step. The
learner must choose an action at and observe a reward rt .

• Non-stationary bandits: the reward distribution changes over time.
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MAB in dynamic pricing

• Selling horizon: [0,T ]

• Demand: Poisson process λt = λ(p(t)).

• Feasible prices: [p, p̄]

• Inventory level: x

Algorithm:

• A “learning” phase (exploration) of length τ is used first, in which κ prices are
tested.

• Then, a “pricing” phase (exploitation) fixes a “good” price based on demand
observations in the first phase.

Omar Besbes, Assaf Zeevi, (2009) Dynamic Pricing Without Knowing the Demand Function: Risk
Bounds and Near-Optimal Algorithms. Operations Research 57(6):1407-1420.
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MAB in dynamic pricing

• Denote n as the market size: xn = nx
and λn(·) = nλ(·). Then, as n → ∞,
the regret is asymptotically optimal.

• Set τ ≍ n−1/4 and κ ≍ n1/4The regret

bound locates in [ C ′

n1/2
, C(log n)1/2

n1/4
]
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Some of challenges

Topics

• Dynamic pricing

• Product assortment

• Advertising placement

Operational concerns:

• finite switches (limited number of prices to test))

• non-stationary reward (demand changes over time)

• switching cost (cost of switching prices)
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People to follow

• Simchi Levi: http://slevi1.mit.edu/

• Assaf Zeevi: https://www0.gsb.columbia.edu/faculty/azeevi/

• Xi Chen: https://pages.stern.nyu.edu/~xchen3/

• Ningyuan Chen: http://individual.utoronto.ca/ningyuanchen/

• Yunzong Xu: https://xyz.mit.edu/research
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