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Distributionally Robust Optimization

Robust for deterministic constraints:
g(x, ξ) ≤ 0,∀ξ → supξ g(x, ξ) ≤ 0.
Robust for stochastic constraints:
EP[g(x, ξ)] ≤ 0,∀P → supP EP[g(x, ξ)] ≤ 0.

min
x

sup
P∈F

EP [f(x, ξ)]

s.t. gj(x, ξ) ≤ 0, almost surely ∀j,P ∈ F ,
x ∈ X ,

where F is the ambiguity set
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Amibiguity set

Commonly used ambiguity sets:

• Moment-based ambiguity set

• Distance-based ambiguity set

▶ ϕ-divergence
▶ Wasserstein distance
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Ambiguity set

Moment-based ambiguity set:

F =

P ∈ P

∣∣∣∣∣∣∣∣
P
(
ξ̃ ∈ Ξ

)
= 1,

(E[ξ̃]− µ0)
⊤Σ−1

0 (E[ξ̃]− µ0) ≤ γ1,

EP[(ξ̃ − µ0)(ξ̃ − µ0)
T ] ⪯ γ2Σ0.


• Ξ: nonempty support, closed and convex,

• µ0 ∈ Rn: first moment,

• Σ0 ∈ Rn×n: covariance matrix.

F(Ξ,µ0,Σ0, γ1, γ2)

Delage and Ye (2010), Distributionally Robust Optimization Under Moment Uncertainty with
Application to Data-Driven Problems, Operations Research.
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Ambiguity set

Moment-based ambiguity set:
Inner moment problem:

Ψ(x; γ1, γ2) = max
P∈F

EP[f(x, ξ)]

⇔ max
F

∫
f(x, ξ)dF (ξ)

s.t.

∫
dF (ξ) = 1,∫
(ξ − µ0)(ξ − µ0)

⊤dF (ξ) ⪯ γ2Σ0,∫ [
Σ0 (ξ − µ0)

(ξ − µ0) γ1

]
dF (ξ) ⪰ 0
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Ambiguity set

Moment-based ambiguity set:
Dual of the inner moment problem:

min
r,Q,P,p,s

(
γ2Σ0 − µ0µ

⊤
0

)
·Q+ r + (Σ0 ·P)− 2µ⊤

0 p+ γ1s

s.t. ξ⊤Qξ − 2ξ⊤ (p+Qµ0) + r − f(x, ξ) ⩾ 0,∀ξ,
Q ⪰ 0,[

P p
p⊤ s

]
⪰ 0,
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Ambiguity set

Moment-based ambiguity set:
Inner moment problem:

max
P∈F

EP[f(x, ξ)]

⇔ min
Q,q,r,t

r + t

s.t. r ≥ f(x, ξ)− ξ⊤Qξ − ξ⊤q, ∀ξ

t ≥ (γ2Σ0 + µµ⊤) ·Q+ µ⊤q +
√
γ1∥Σ1/2

0 (q + 2Qµ)∥,
Q ⪰ 0,

which can be solved to any precision ϵ in time polynomial in log(1/ϵ) and the size
of the problem (under some assumptions: f(x, ξ) is concave in ξ).
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Data driven for moment-based ambiguity set

Under some assumptions (f concave in ξ and convex in x, support set is closed and
bounded, ...), given a set of {ξi}Mi=1 of M samples, for any δ > 0, let
µ̂ = 1

M

∑M
i=1 ξi and Σ̂ = 1

M

∑M
i=1(ξi − µ̂)(ξi − µ̂)⊤,

γ̄1 =
β̄(δ̄/2)

1−ᾱ(δ̄/4)−β̄(δ̄/2)
, γ̄2 =

1+β̄(δ̄/2)

1−ᾱ(δ̄/4)−β̄(δ̄/2)
,

where ᾱ(δ̄/4) = O(1/
√
M), β̄(δ̄/2) = O(1/M).

Then, if M is large enough, with probability greater than 1− δ over the choice of
{ξi}Mi=1, we have that any optimal solution of the DRSP formed using these
samples will satisfy the constraint:

E[f(x∗, ξ)] ≤ Ψ(x∗; γ̄1, γ̄2),

where E is the expectation w.r.t the true distribution of ξ.
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Example: portfolio optimization

At any given day of the experiment, the algorithms are allowed to use a period of 30 days from
the most recent history to assign the portfolio. In Popescu(2007), the mean and covariance matrix
of the distribution is assumed to be equal to the empirical estimates measured on the last 30 days.
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RSOME:Robust stochastic optimization made easy

https://xiongpengnus.github.io/rsome/
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Moment-based ambiguity set

Papers if you are interested:

• Delage and Ye (2010), Distributionally Robust Optimization Under Moment
Uncertainty with Application to Data-Driven Problems. Operations Research
58(3):595-612

• Wolfram Wiesemann, Daniel Kuhn, Melvyn Sim (2014) Distributionally
Robust Convex Optimization. Operations Research 62(6):1358-1376.

• Bertsimas, Dimitris, Melvyn Sim, and Meilin Zhang. 2019. Adaptive
distributionally robust optimization. Management Science 65(2) 604-618.

• Chen, Zhi, Melvyn Sim, Peng Xiong. 2020. Robust stochastic optimization
made easy with RSOME. Management Science 66(8) 3329-3339.
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Ambiguity set

Distance-based ambiguity set:

B(r) =
{
P ∈ P : d(P, P̂) ≤ r

}

• P̂: reference distribution,

• r > 0: radius of the ambiguity set.

• d(P, P̂): distance between P and P̂.

Can be data driven! We can use the empirical (discrete) distribution as the
reference distribution.

P̂ =
1

N

N∑
i=1

δξ̂i .
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Distance-based ambiguity set

ϕ-divergence (or f -divergence)):

dϕ(P, P̂)


=
∑

p̂ ϕ(
p

p̂
), where p and p̂ are densities of P, P̂

=

∫
Ω
ϕ

(
dP
dP̂

)
dP̂

Kullback-Leibler divergence (relative entropy): ϕ(t) = t log(t)− t+ 1:

dKL(P, P̂) =
∑

p log
p

p̂
.

Hellinger distance: ϕ(t) = (
√
t− 1)2:

dH(P, P̂) =
∑

(
√
p−

√
p̂)2.
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Distance-based ambiguity set

KL divergence

d(P,Q) =
9

25
ln

(
9/25

1/3

)
+

12

25
ln

(
12/25

1/3

)
+

4

25
ln

(
4/25

1/3

)
≈ 0.085

d(Q,P ) =
1

3
ln

(
1/3

9/25

)
+

1

3
ln

(
1/3

12/25

)
+

1

3
ln

(
1/3

4/25

)
≈ 0.097
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Distance-based ambiguity set

The ϕ-divergence based DRO:

min
x

max
P

EP[f(x, ξ̃)]

s.t. dϕ(P, P̂) ≤ θ

Consider a discrete case:

min
x

max
P

N∑
i

pi[f(x, ξ̃i)]

s.t.

N∑
i

qiϕ(
pi
qi
) ≤ θ (α)

N∑
i

pi = 1 (λ)
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Distance-based ambiguity set

By duality:

min
x,λ,α

λ+ α

N∑
i

qiϕ
∗

(
f(x, ξ̃i)− λ

α

)
+ αθ.

which is a finite-dimension convex optimization problem.

If we use the KL divergence and f(x, ξ) = c(ξ)⊤x+ g(ξ), we have:

min
x,λ,α

λ+ α

N∑
i

qi exp

(
c(ξ̃i)

⊤x+ g(ξ̃i)− λ

α

)
+ α(θ − 1).

where ϕ∗KL(s) = es − 1.
Exponential cone programming! can be solved by MOSEK
https://docs.mosek.com/modeling-cookbook/expo.html.

Runyu Tang DRO: DRO phi-divergence based 15 / 46

https://docs.mosek.com/modeling-cookbook/expo.html


f-divergence based DRO

Papers if you are interested:

• Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg,
Gijs Rennen, (2012) Robust Solutions of Optimization Problems Affected by
Uncertain Probabilities. Management Science 59(2):341-357.

• Güzin Bayraksan, David K. Love. (2015) Data-Driven Stochastic
Programming Using Phi-Divergences. In INFORMS Tutorials in Operations
Research. Published online: 26 Oct 2015; 1-19

• Bart P. G. Van Parys, Peyman Mohajerin Esfahani, Daniel Kuhn (2020) From
Data to Decisions: Distributionally Robust Optimization Is Optimal.
Management Science 67(6):3387-3402.

KL-divergence based DRO is the least conservative data-driven predictors and prescriptors whose
out-of-sample disappointment decays at a rate no less than some prescribed threshold r > 0. (Van
Parys et al., 2020)
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Wasserstein distance

Definition 1.

For any p ∈ [1,∞], the Wasserstein distance between two probability measures P
and Q is defined as:

Wp(P,Q) = inf
π∈Π(P,Q)

(∫
Ω×Ω

∥x− y∥pπ(dx,dy)
)1/p

.

where ∥ · ∥ is a norm on Rm and Π(P,Q) is the set of all probability measures on
Ω× Ω with marginals P and Q, respectively.

Wasserstein distance is a metric:

• nonnegative, symmetric, subadditive,

• it vanishes only if P = Q.

• it is finite whenever P and Q have finite p-th order moments.
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Wasserstein distance

Looking at the discrete case:

Wp(P,Q) = min
Π

∑
k,l

∥ξk, ξl∥Πkl.

s.t.
∑
l

πkl = Pk,∀k∑
k

πkl = Ql,∀l

It links to the optimal transport problem!
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Wasserstein distance
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Wasserstein distance

Link to optimal transport problem:
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Wasserstein distance

Dual Kantorovich Problem

Definition 2.

For any p ∈ [1,∞], the Wasserstein distance between two probability measures P
and Q is defined as:

W p
p (P,Q) = sup

∫
Ω
ψ(x)P(dx)−

∫
Ω
ϕ(y)Q(dy).

s.t. ψ(x)− ϕ(y) ≤ ∥x− y∥p, ∀x, y ∈ Ω.
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Wasserstein distance

Nominal distribution: In the absence of any structural information, it is
convenient to set P̂N to the discrete empirical distribution: the uniform
distribution on the N training samples {ξ̂1, ξ̂2, . . . , ξ̂N},

P̂N =
1

N

N∑
i=1

δξ̂i ,

where δξ is the Dirac delta function centered at ξ.
Then, the Wasserstein DRO is

min
x

sup
P∈F

EP [f(x, ξ)]

s.t. F = {P |Wp(P, P̂N ) ≤ θ}.
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Wasserstein distance

Runyu Tang DRO: DRO Wasserstein based 23 / 46



Wasserstein DRO

min
x

sup

∫
ξ
f(x, ξ)P(dξ)

s.t. Wp(P, P̂N ) ≤ θ.

Let’s first focus on the inner sup problem:

sup

∫
ξ
f(x, ξ)P(dξ)

s.t. inf
π∈Π(P,P̂N )

(∫
Ω×Ω

∥ξ − ξ̂∥pπ(dξ,dξ̂)
)1/p

≤ θ.
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Wasserstein DRO

Looking at the discrete case [This part may not rigorous enough, please refer to
the paper for more details.]:

sup
P

∑
k

f(x, ξ)Pk

s.t. min
π

∑
k,l

∥ξk − ξl∥pπkl ≤ θ.

∑
l

πkl = Pk,∀k∑
k

πkl = P̂N
l ,∀l
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Wasserstein DRO

sup
P

∑
k

f(x, ξ)Pk

s.t.
∑
k,l

∥ξk − ξ̂l∥pπkl ≤ θ.

∑
l

πkl = Pk,∀k

∑
k

πkl =
1

N
,∀l

⇒ sup
P

∑
k

∑
l

f(x, ξ)πkl

s.t.
∑
k,l

∥ξk − ξ̂l∥pπkl ≤ θ.

∑
k

πkl =
1

N
, ∀l
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Wasserstein DRO

inf
λ,si

λθ +
1

N

N∑
i

si

s.t. si + λ∥ξk − ξ̂l∥p ≥ f(x, ξk), ∀l ≤ N, ∀k
λ ≥ 0.

⇒ inf
λ,si

λθ +
1

N

N∑
i

si

s.t. max
ξ∈Ξ

f(x, ξ)− λ∥ξ − ξ̂i∥p ≤ si,∀i ≤ N

λ ≥ 0.
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Wasserstein DRO

inf
λ,si

λθ +
1

N

N∑
i

si

s.t. [−f ]∗(zi − vi) + σΞ(vi)− zTi ξ̂i + ψ(q)λ∥zi
λ
∥q∗ ≤ si, ∀i ≤ N.

where ψ(q) = (q − 1)q−1/qq for q > 1 and ψ(1) = 1, ∥ · ∥∗ represents dual norm and
f∗ denotes the conjugate function. (f∗(y) = sup{xy − f(x), ∀x})

Finite convex program
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Wasserstein DRO

Assumptions:

• p = 1.

• ξ ∈ Ξ satisfies Cξ ≤ D

• f(ξ) is piecewise linear f(ξ) = max{aξ + b, 0}.
Then, we have

max
ξ∈Ξ

f(ξ)− λ∥ξ − ξ̂i∥ = max
ξ∈Ξ

max{aξ + b, 0} − λ∥ξ − ξ̂i∥ ≤ si,∀i

⇒


max
ξ∈Ξ

aξ + b− λ∥ξ − ξ̂i∥ ≤ si, ∀i

max
ξ∈Ξ

− λ∥ξ − ξ̂i∥ ≤ si, ∀i
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Wasserstein DRO

max
ξ∈Ξ

aξ + b− λ∥ξ − ξ̂i∥ ≤ si, ∀i

max
ξ∈Ξ

aξ + b− max
||vi||∗≤λ

vi(ξ − ξ̂i) ≤ si,∀i (Dual Norm)

min
||vi||∗≤λ

max
ξ∈Ξ

aξ + b− vi(ξ − ξ̂i) ≤ si,∀i (Change Seq of min max)max
ξ∈Ξ

aξ + b− vi(ξ − ξ̂i) ≤ si

||vi||∗ ≤ λ
(1)
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Wasserstein DRO

max
ξ∈Ξ

aξ + b− vi(ξ − ξ̂i) = max
ξ∈Ξ

(a− vi)ξ + b− viξ̂i

max
ξ∈Ξ

(a− vi)ξ + b− viξ̂i

s.t. Cξ ≤ D

min
u
Du+ b+ viξ̂i

s.t.Cu ≥ a− vi

⇒ min
u
Du+ b+ (a− Cu)ξ̂i = aξ̂i + b+ u(D − Cξ̂i)
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Wasserstein DRO

To sum up:

sup
ξ∈Ξ

∫
ξ
max{aξ + b, 0}P(dξ)

s.t. Wp(P, P̂N ) ≤ θ.

where Ξ = {ξ|Cξ ≤ D}.

⇐⇒

min
λ,si,u,v

λθ +
1

N

N∑
i

si

s.t. aξ̂i + b+ u(D − Cξ̂i) ≤ si,∀i
|a− Cu| ≤ λ

v(D − Cξ̂i) ≤ si,∀i
|Cv| ≤ λ
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Wasserstein DRO

Merits of Wasserstein DRO:

• Fidelity: DRO are more “honest” than their nominal counterparts, as they
acknowledge the presence of distributional uncertainty.

• Tractability: finite convex program (when p = 1 finite LP)

• Performance guarantee:

• Regularization by Robustification:
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Wasserstein DRO

Performance guarantee:
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Wasserstein DRO

Variation Regularization:
For Wasserstein DRO, for a broad class of loss functions, possibly non-convex and
non-smooth, with high probability, the Wasserstein DRO is asymptotically
equivalent to variation regularization problem. [Not rigorous here, please refer to
the paper for more details.]

min
x

Eξ∼P̂N [f(x, ξ)] + ρV(f)

Rui Gao, Xi Chen, Anton J. Kleywegt (2022) Wasserstein Distributionally Robust Optimization
and Variation Regularization. Operations Research 0(0).
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Wasserstein DRO
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Example: Portfolio Optimization

where LCX is linear-convex ordering (LCX)-based goodness-of-fit test. from
[Bertsimas, Gupta and Kallus(2014) Robust SAA.]
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Example: Newsvendor problem

min
x

EP [cx− pmin(x,D)] = EP
[
(c− p)x+ p(x− D̃)+

]

When the demand {D̃t} is i.i.d. process with distribution P, the optimal solution is

x∗ = inf
{
y : F (y) < p−c

p

}
.

We can use SAA, moment-based DRO, Wasserstein DRO or KL-divergence based
DRO to solve this problem.
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Example: Newsvendor problem

Let’s do this!

• c = 5, p = 7.

• Demand distribution: D ∼ Binomial(10, 0.5) + 1.

• Sample size: N = 50

• Generate the sample {D̂t}.
SAA:

x̂∗SAA = argmin
x

1

N

N∑
t=1

[
(c− p)x+ p(x− D̂i)

+
]

DRO:

x̂∗DRO = argmin
x

max
P∈F

EP
[
(c− p)x+ p(x− D̂i)

+
]

You may try the Julia language for optimization.
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Example: Newsvendor problem

Sutter, T., Van Parys, B. P., & Kuhn, D. (2021). A general framework for optimal data-driven
optimization. arXiv preprint arXiv:2010.06606v2.
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Wasserstein DRO

Materials if you are interested

• Lectures

▶ Daniel Kuhn’s talk at DTU
▶ Daniel Kuhn’s talk at INFORMS 2019
▶ Wenzao Su’s summer school

• People

▶ Daniel Kuhn https://www.epfl.ch/labs/rao/

▶ Jose Blanchet https://web.stanford.edu/~jblanche/
▶ Melvyn Sim

https://bizfaculty.nus.edu.sg/faculty-details/?profId=127

▶ Gao Rui, Chen Zhi

• Misc

▶ RSOME: Robust Stochastic Optimization Made Easy
▶ https://github.com/Operations-Research-Science/Ebook-An_

introduction_to_robust_optimization
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Reference
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Other trending topics

• Relationship with regularization

• Multi-period robust optimization

• Chance constraints

• Robust satisficing

• Statistical properties

• ...
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Robust satisficing

Data driven robust satisficing:

κτ = min k

s.t. EP[f(x, ξ)]− τ ≤ k∆(P, P̂),∀P
x ∈ X , k > 0

which is equivalent to

κτ = min k

s.t.
1

N

∑
yi ≤ τ

yi ≥ sup
ξi

{
f(x, ξi)− k∥ξi − ξ̂i∥

}
∀i

x ∈ X , k > 0
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Recent advances
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Research 0(0).
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Suggested readings
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• Jose Blanchet, Lin Chen, Xun Yu Zhou (2022) Distributionally Robust
Mean-Variance Portfolio Selection with Wasserstein Distances. Management
Science 68(9):6382-6410.
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