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Introduction

What is Machine Learning?
Machine learning (ML) is a field of inquiry devoted to understanding and building
methods that ‘learn’, that is, methods that leverage data to improve performance
on some set of tasks.

Machine Learning v.s. Statistical Learning.
Wiki treats them the same!
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Some learning examples

Email Spam Filtering

Classification: Spam or not spam?
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Some learning examples

Handwritten Digit Recognition
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Some learning examples

Customer Segmentation and Recommendation System
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Some learning examples

Self-driving vehicles
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Some learning examples

AlphaGo
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Some learning examples

ChatGPT (and Copilot)
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Some learning examples

GPT: Generative Pre-trained Transformer
Transformers typically undergo self-supervised learning involving unsupervised
pre-training followed by supervised fine-tuning.
(Natural Language Processing) NLP:

• RNN (recurrent neural network), LSTM (long short term memory)

• Transformer: Vaswani. et. al. (2017). Attention is all you need. NeurIPS.
(65000+ citations). Originally for language translation.

• A good illustration site
http://jalammar.github.io/illustrated-transformer/

• BERT (Bidirectional Transformers, 2018, 59000+ citations), 0.3 billion
parameters. It rapidly starts to power Google Search.

• GPT (Masked Self Attention), GPT-2 1.5 billion parameters, GPT-3 175
billion parameters,
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Some learning examples

https://time.com/6247678/openai-chatgpt-kenya-workers/
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Common Learning types

Supervised Learning:

• Regression

• LDA, SVM, kNN

• Tree Models

• Neural Networks

Unsupervised Learning:

• Clustering

• Dimension Reduction

Reinforcement Learning:

• Q-learning

Semi-supervised (both labelled and unlabelled data),
Self-supervised learning (divide the data into x and y).

Runyu Tang Machine Learning: Introduction 10 / 65



ChatGPT

fine-tune the model using Proximal Policy Optimization.
https://openai.com/blog/chatgpt/
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Supervised Learning

Training data: (x1,y1), (x2,y2), (xN ,yN )
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Supervised Learning

Regression

• Linear Regression

• Logistic Regression

• Kernel Regression
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Linear Regression

Y = β0 + β1x1 + β2x2 + . . .+ βkxk + ϵ

Y = βTX+ ϵ

We can use the least square method to estimate β.

β̂ = argmin
β

n∑
i=1

(yi − βTxi)
2

The estimator of β̂ is

β̂ = (XTX)−1XTY
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Logistic Regression

Y ∈ {0, 1}, Classification

Z = β0 + β1x1 + β2x2 + . . .+ βkxk + ϵ

Y =
1

1 + exp(−Z)
∈ [0, 1]

We can use the maximum likelihood method (MLE) to estimate β.

β̂ = argmax
β

n∏
i=1

P (yi|xi) = argmax
β

n∏
i=1

(
1

1 + exp(−βTxi)

)yi (
1− 1

1 + exp(−βTxi)

)1−yi

Runyu Tang Machine Learning: Supervised Learning 15 / 65



Logistic Regression

Multiclass classification

• One-vs-all Method:
• Multinomial Logistic Regression

▶ Softmax function:

σ(z)j =
exp(zj)∑K
k=1 exp(zk)

▶ Probability of in class c:

Pr(Yi = c) = σ(z)c =
exp(βcXi)∑K

k=1 exp(βkXi)

▶ K − 1 classes:

Pr(Yi = c) =
exp(βcXi)

1 +
∑K−1

k=1 exp(βkXi)
if c ̸= K, (=

1

1 +
∑K−1

k=1 exp(βkXi)
otherwise.)
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Extensions of Linear Models

• Polynomial
• Spline: adds additional constraints, namely that the function is linear beyond
the boundary knots
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Extensions of Linear Models

• Kernel methods: a weighting function or kernel Kλ(x0, xi), which assigns a
weight to xi based on its distance from x0.

Nadaraya-Watson with Epanechnikov kernel: Ŷ (x) =
∑n

i=1 Kλ(x,xi)yi∑n
i=1 Kλ(x,xi)

,

where Kλ(x0, x) = D
(

|x−x0|
λ

)
, D(t) = 3

4
(1− t2), if |t| ≤ 1(0, otherwise).
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Linear Discriminant Analysis

Linear Discriminant Analysis(LDA) (not Latent Dirichlet Allocation)

LDA takes a different approach to classification than logistic regression. Rather
than attempting to model the conditional distribution of Y given X,
P (Y = k|X = x), LDA models the distribution of the predictors X given the
different categories that Y takes on, P (X = x|Y = k).

Bayes’ theorem:

P (Y = k|X = x) =
P (X = x|Y = k)P (Y = k)

P (X = x)

The Bayes’ classifier is then selected. That is the observation assigned to the group
for which the posterior probability is the largest.
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LDA

• A two-dimensional plot of
the vowel training data.
There are eleven classes with
X ∈ R10, and this is the
best view in terms of a LDA
model. The heavy circles
are the projected mean
vectors for each class. The
class overlap is considerable.
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LDA

The left panel shows three Gaussian distributions, with the same covariance and
different means. Included are the contours of constant density enclosing 95% of the
probability in each case. The Bayes decision boundaries separating all three classes
are the thicker solid lines. On the right we see a sample of 30 drawn from each
Gaussian distribution, and the fitted LDA decision boundaries.
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Support Vector Machine

Support Vector Machine(SVM)

• Separate p−dimensional points with
a (p− 1)-dimensional hyperplane.

• For the RHS figure, H1 does not
separate the classes.

• H2 does, but with a small margin,
H3 separates them with the maximal
margin.
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SVM

Support Vector Machine(SVM)

• Data points: (xi, yi), yi ∈ {−1, 1}.
• Hard-margin:

min
w, b

1

2
∥w∥2

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . , n

• Soft-margin (not linearly separable):

min
w, b

1

2
∥w∥2 + C

n∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n
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Neighborhood Methods

K-nearest neighbors (KNN)

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi

single parameter: k.
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Tree-based models

Decision tree classifier

• Python: sklearn.tree.DecisionTreeClassifier

• R: rpart

• Pros: easy to understand, easy to interpret, fast to
train, can handle both numerical and categorical
data, can handle multi-output problems, can
handle missing values

• Cons: can be unstable, can be biased, can be
overfitting
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Tree-based models

Ensemble methods: use multiple learning algorithms to obtain better predictive
performance than could be obtained from any of the constituent learning
algorithms alone.

• Random forest

• Gradient Boosting Machine (GBM):

▶ XGBoost
▶ lightGBM: by Microsoft

Generally, GBM > RF > DT.
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Neural Networks

An easy way to “feel” NN: https://playground.tensorflow.org/
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Neural Networks

Convolutional Neural Networks (CNN): a specialized kind of Feed forward Neural
Networks

• Convolution Layer
• Pooling Layer
• ReLu (Rectified Linear Unit) (max(0, x))
• Sigmoid ( 1

1+e−x )
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Neural Networks

Modern CNN architectures:

• Network in Network

• Inception

• ResNet, ResNeXt

• ShuffleNet

• DenseNet

• CondenseNet

• SENet...

Runyu Tang Machine Learning: Supervised Learning 29 / 65



Overfitting
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Overfitting
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Overfitting
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Overfitting

How to resolve overfitting?

• Reduce the number of features

• Increase the number of training samples

• Regularization

• Cross-validation
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Questionare results
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Regularization

Linear Regression:

min
w

1

2
∥y −Xw∥2

LASSO:

min
w

1

2
∥y −Xw∥2 + λ∥w∥1

Ridge:

min
w

1

2
∥y −Xw∥2 + λ∥w∥22
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Regularization
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Regularization
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Regularization

p−norm:

∥w∥p = (

p∑
i=1

|wi|p)1/p, for p ≥ 1

homogeneous subadditive positive definite
∥kx∥ = |k|∥x∥ ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ∥x∥ ≥ 0

Prof. Zongben Xu:
L1/2 norm: finding sparse solutions.
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Regularization
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Hold-out method

hold-out method: involves splitting the data into multiple parts and using one
part for training the model and the rest for validating and testing it. (normally
70/30)
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Cross validation

K-fold cross validation: randomly divide the training set into K folds without
replacement, then use fold k as the validation set and the union of the other K − 1
folds as the training set. Repeat this process K times, and average the
performance over the K folds.
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¡Bootstrap Method¿

Bootstrap: randomly sample n
observations with replacement
from the training set to create a
bootstrap sample. Then fit a
model on the bootstrap sample
and evaluate it on the out-of-bag
observations. Repeat this
process B times, and average the
performance over the B
bootstrap samples.
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Unsupervised Learning

Unsupervised learning is a type of algorithm that learns patterns from untagged
data.
Learning hidden structures of unlabeled data

• Unlabeled data

• No error or reward signal to evaluate a solution
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Unsupervised Learning

Major tasks

• Density estimation

• Association rules

• Cluster analysis

• Latent variable analysis
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Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability density
fX(x), and we wish to estimate fX at a point x0.

• Local estimation

• Kernel Density Estimation
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Density Estimation

f̂(x0) =
1

Nλ
{#xi ∈ N (x0)}

where N (x0) is the neighborhood of x0 of width λ.

With kernel:

f̂(x0) =
1

Nλ

N∑
i=1

Kλ(x0, xi)

where Kλ(x0, x) = ϕ(|x− x0|/λ) and ϕ is the Gaussian density with mean zero and
standard deviation λ.
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Association Rules

X ⇒ Y means that if an itemset contains X, then it is likely to also contain Y .
E.g. X = {Beer}, Y = {Diaper}

• Dsupport(X ⇒ Y ) = Number of transactions containing both X and Y
Total number of transactions

• Dconfidence(X ⇒ Y ) = Number of transactions containing both X and Y
Number of transactions containing X

• X ⇒ Y is a strong rule if Dconfidence(X ⇒ Y ) > β and
Dsupport(X ⇒ Y ) > α

Apriori algorithm: Market Basket Analysis
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Clustering

https://scikit-learn.org/stable/modules/clustering.html
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K-means clustering

K-means clustering: aims to partition n observations into k clusters in which
each observation belongs to the cluster with the nearest mean (cluster centers or
cluster centroid), serving as a prototype of the cluster.
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Hierarchical Clustering

• Agglomerative: bottom-up approach, each observation starts in its own
cluster, and clusters are successively merged together.

• Divisive: top-down approach

Dendrogram: a tree-like diagram used to illustrate the arrangement of the
clusters produced by hierarchical clustering.

Runyu Tang Machine Learning: Unsupervised Learning Clustering 50 / 65



DBSCAN

DBSCAN: Density-based Spatial Clustering of Applications with Noise.
Given a set of points in some space, it groups together points that are closely
packed together (points with many nearby neighbors), marking as outliers points
that lie alone in low-density regions (whose nearest neighbors are too far away)

• Find core samples of high density

• Expand clusters from core samples

• Assign noise samples to nearest cluster
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DBSCAN

Pros & Cons

• Pros: arbitrary shape
clusters, no need to specify
number of clusters, robust
to outliers

• Cons: sensitive to
parameters, not suitable for
large datasets

A visualization: https://www.
naftaliharris.com/blog/

visualizing-dbscan-clustering/
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Latent Variable Analysis

Principal Component Analysis (PCA):
• Maximize the variance of the projected data
• Minimize the distance between the data and projections
• Equivalent to fine the eigenvectors corresponding to the largest eigenvalues of
the covariance matrix
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Reinforcement Learning

Multistage decision problems:

• DP: Dynamic programming

• MDP: Markov Decision Process

• RL: Reinforcement learning

The main difference between the classical dynamic programming methods and
reinforcement learning algorithms is that the latter do not assume knowledge of an
exact mathematical model of the MDP and they target large MDPs where exact
methods become infeasible.
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Dynamic Programming

• state: the current state of the environment st ∈ S
• action: the action taken by the agent at ∈ A.

• reward: the reward received by the agent r(st, at)

• state transition: the transition from the current state to the next state.
st+1 = f(st, at)

Value function

V π(s) = Eπ

[
T∑
t=0

γtr(st, at)

]
(1)

where π is the policy, γ is the discount factor.
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Dynamic Programming

For the finite-horizon problem:
Backward induction:

Vt(st) = max
at

Eπ [r(st, at) + γVt+1(st+1)]

For the infinite horizon problem: T → ∞:
Bellman equation

V ∗(s) = max
π

Eπ [r(s, a) + γV ∗(f(s, a))]

We can write is as

TV ∗ = V ∗

where the operator T satisfies TV (s) = maxπ Eπ [r(s, a) + γV (f(s, a))].
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Dynamic Programming

Fixed point theory

• Monotonicity: T is monotone if TV1 ≤ TV2 whenever V1 ≤ V2.

• Contraction mapping: T is a contraction mapping if
||TV1 − TV2|| ≤ γ||V1 − V2|| for all V1, V2.

see Bertsekas, Abstract dynamic programming 2013, page 7 & 8 for details.
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Dynamic programming

Algorithms for solving the infinite horizon problem.

• Policy iteration: we start by choosing an arbitrary policy π. Then, we
iteratively evaluate and improve the policy until convergence:

• Value iteration: In value iteration, we compute the optimal state value
function by iteratively updating the estimate V(s):

In general, policy iteration is more efficient (fewer iterations) than value iteration,
but it requires more memory.
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Dynamic programming

Top five research method published by OR since 1981:

• Math programming

• Queueing

• Dynamic programming

• Simulation

• Game theory

In the past 10 years (2010-2019), dynamic programming has the strongest
community, followed by pricing.

Angelito Calma , William Ho , Lusheng Shao , Huashan Li (2021) Operations Research: Topics,
Impact, and Trends from 1952-2019. Operations Research 69(5):1487-1508.
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Q-learning

• Q-learning is a model-free reinforcement learning algorithm

• It can be used to find the optimal policy for a given MDP

• It is an off-policy algorithm
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DQN

DQN: Deep Q-Network: a Q-Learning framework with a neural network.

• The network is trained to predict the Q-value of each action given the current
state
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DQN

The values at the output layer represent the Q function given the input state for
each valid action. https://github.com/yenchenlin/DeepLearningFlappyBird
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